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Abstract

The objective of this study was to develop low-cost, robust and accurate sensor

systems on a quadrotor for the implementation of a sensor-based vehicle formation

control algorithm. The algorithm was recently developed at the ANU and was only

ever tested in simulation.

A new quadrotor was assembled and mounted with a custom omnidirectional

vision system to acquire bearings measurements of other vehicles. A custom omni-

directional lens was used which had a better vertical field of view compared with

tested commercial solutions. The vision system, coupled with an efficient marker

detection algorithm, detected bearings of other vehicles at 55Hz with a typical error

of less than 5◦ in azimuth and elevation.

A widely used driver package for the Vicon motion capture system was mod-

ified to provide robust velocity measurements over a poor wireless channel. This

was experimentally evidenced by a significant reduction in variability of velocity

measurements when compared with a previously used method. An adaptation to

the formation control algorithm was proposed which could function without velocity

measurements for system damping and its performance was verified in simulation.

The robustness and accuracy of these key sensor measurements was demonstrated

in a flight test where the quadrotor was flown under manual control. Support for

offboard control was added to the flight controller so that the vehicle could be

controlled by the vision system. Unfortunately, the quadrotor was not flown under

the control of the formation control algorithm because of time constraints.
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Chapter 1

Introduction

1.1 Description and Scope

Vehicle formation control encompasses the problem of arranging groups of autonomous

vehicles in specific relative geometries. The primary goal of this project is to de-

velop a vehicle and sensor systems for the implementation of a sensor-based vehicle

formation control algorithm. The algorithm was developed in the computer vision

and robotics research group at The Australian National University (ANU) by Stacey

et al. (2013).

Vehicles working in formation provide improved redundancy, robustness, effi-

ciency and flexibility over a single vehicle (Balch and Arkin, 1998). Formation

control of vehicles has applications in spacecraft interferometry (Beard et al., 2001),

environment mapping, surveillance, sensor distribution, and distributed manipula-

tion of objects (Das et al., 2002; Michael et al., 2011). Early vehicle formation

control research was conducted on ground vehicles, but recently research has fo-

cused on aerial vehicles. Formation control algorithms on aerial vehicles are often

dependent on external sensors to locate other vehicles which are only available in

laboratory environments.

The formation control algorithm developed at ANU can operate with only partial

state measurements - such as bearing-only or range-only measurements - of other

vehicles (Stacey et al., 2013). These kinds of measurements are obtainable with low

cost and low weight sensor systems that can be implemented onboard an aerial vehi-

cle. The algorithm is formalised using the bondgraph modelling framework which is

well described in (Borutzky, 2006). Bondgraph modelling allows a graphic represen-

tation of the flow of energy through a system and can give a detailed perspective on

system behaviour and stability. The algorithm applies virtual mechanical couplings

between vehicles - such as springs and dampers - which reach a minimum energy

state when all vehicles are in formation. The algorithm was previously only demon-

strated in simulation and did not address some of the practical issues associated

with a physical implementation. A physical implementation of the algorithm will

provide insight into the impact of practical issues such as sensory limitations and

under-actuation of control forces.
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Chapter 1 Introduction 1.2 Thesis Contributions

This project aimed to develop robust sensors for the implementation of this

algorithm on a vehicle known as a quadrotor. A quadrotor was assembled with

a custom omnidirectional vision system to provide bearing measurements of other

vehicles. The quadrotor used a cutting-edge open source flight controller which was

modified to support the implementation. The algorithm was adapted to improve its

practicality for implementation on an aerial vehicle. The system developed for this

project was intended to provide a suitable platform for implementation and analysis

of the formation control algorithm.

1.2 Thesis Contributions

This primary contributions of this thesis are summarised as:

� A quadrotor was assembled with a custom omnidirectional vision system.

� A custom omnidirectional lens was designed capable of detecting bearings of

other vehicles at high accuracy and over a large vertical field of view.

� Support for offboard control was added to the flight controller of the quadrotor.

� A widely-used driver for the Vicon motion capture system was modified to

improve the reliability of velocity measurements in situations where measure-

ments were lost due to vehicle occlusion or packet loss.

� A vehicle marker detection algorithm capable of running at high speed onboard

the quadrotor was developed and tested.

� An alternative formation control algorithm was proposed in which damping

occurred in the image space rather than with velocity measurements.

1.3 Thesis Outline

This thesis is divided into six chapters following this introduction. Chapter 2

presents an overview of the fields of visual servo control and formation control and

explains the utility of quadrotors as a research platform. Chapter 3 formulates the

formation control algorithm being implemented and develops a modification to the

algorithm. Chapter 4 details the hardware developments, such as the development

of an omnidirectional vision system, and construction of a new quadrotor. Chap-

ter 5 covers the software developments and gives a detailed analysis on the quality

of sensor measurements. Chapter 6 discusses simulations of the formation control

algorithm and addresses the future developments required before the algorithm can

be applied. Chapter 7 discusses the primary contributions of this project and future

research prospects.
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Chapter 2

Background

2.1 Formation Control

The control strategies for formation control typically fall under three general clas-

sifications - behaviour-based and potential field approaches; the leader-follower ap-

proach and the virtual structure method. Research is attempting to address for-

mation control issues such as formation stability, sensory limitations and complex

vehicle topologies (Chen and Wang, 2005).

Followers track a leader in coordinated arrangements in the leader-follower ap-

proach. Wang (1991) developed simple and robust control laws using a leader-

follower approach. His method relied on nearest neighbour tracking and inter-vehicle

communication. A downside of early leader-follower approaches was that there was

a single point of failure - the leader - and complications if followers fell behind.

An experimental implementation of manipulating and transporting objects using

quadrotors flying in formation was reported by Michael et al. (2011). Their method

was dependant on global state information and could only follow trajectories slowly

due to uncertainties in sensing and limited control performance.

Behaviour-based control schemes depend on a set of desired behaviours that are

weighted depending on the current circumstances of the vehicle. Balch and Arkin

(1998) developed a behavioural-based control scheme to maintain and move between

specific geometric formations for a small number of car-like robots. The method

required direct perception of other robots and transmission of global coordinates. A

robust behavioural-based approach implementing artificial potentials from virtual

leaders was proposed by Leonard and Fiorelli (2001). Their approach demonstrated

simple group control, although it was for schooling and flocking behaviour rather

than formation control.

The virtual structure method treats the entire formation as a rigid body and the

structure moves while accurately maintaining a specific arrangement among agents.

Beard et al. (2001) introduced a virtual structure approach that could be combined

with leader-following or behavioural-control techniques for spacecraft interferometry

with further work by Ren and Beard (2004). Their research improved existing

3



Chapter 2 Background 2.1 Formation Control

virtual structure approaches by implementing a decentralised approach to improve

robustness. However, the virtual structure method is subject to poor handling in

dynamic environments because of slow response times.

A recent approach is passivity-based control in which a system is described by

its real and virtual energy. Virtual energy can include sources such as deviation

from a goal state. Hatanaka and Igarashi (2012) developed a passivity-based ap-

proach which performed well and could function under the presence of communica-

tion delays and objects in the environment. The method could function in varying

topologies, such as when an agent loses connectivity with the rest of the forma-

tion. Passivity-based approaches benefit from their simplicity and robustness and

are often formulated in such a way that stability is easily demonstrated.

Formation control mechanisms often require global position and velocity mea-

surements, although, it can be difficult to obtain these measurements, particularly

on an aerial vehicle (Stacey et al., 2013). Onboard sensors typically only provide

partial relative state measurements of other vehicles (Franchi et al., 2012). Das et al.

(2002) described a scalable framework for formation control based on leader-follower

chains utilising decentralised reactive controllers. Controllers were modularised into

performing simple tasks, such as object avoidance, and more complex tasks such as

formation control. The framework was demonstrated on ground vehicles using only

relative state measurements from an omnidirectional camera. The vehicles were able

to manipulate objects and navigate through small openings.

A decentralised behaviour-based control scheme for the teleoperation of groups of

quadrotors using only relative-bearing measurements from a camera was recently re-

ported (Franchi et al., 2012). A human operator controls the scaling and placement

of the vehicles as a bearing-constrained formation is scale, rotational and trans-

lational invariant. A leader-follower approach is employed with behaviour-based

control schemes in place to avoid objects and inter-vehicle collisions. The use of

a human-in-the-loop control scheme allows robots to navigate an environment that

cannot be handled with complete autonomy.

A formation control framework realised using bondgraph modelling and port-

Hamiltonian theory was proposed by Stacey et al. (2013). Port-Hamiltonian theory

is a modelling approach for physical engineering systems with complex interactions

(Schaft, 2006). Bondgraph modelling is a powerful graphical modelling methodology

for examining the flow of energy through a system (Borutzky, 2006). The algorithm

could function in complex vehicle topologies with bearing-only or range-only sensors.

The implementation lacked common features seen in formation control such as object

avoidance and teleoperation. A proof of stability was provided which was easily

formulated from the bondgraph model. Methods from the field of visual servo control

were used in adapting sensor measurements into the model.

4



Chapter 2 Background 2.2 Visual Servo Control

2.2 Visual Servo Control

The use of vision information in a feedback loop for a mechanical control system is

known as visual servo control. This field broadly combines research from computer

vision, kinematics and dynamics. Visual servo control has classically addressed the

control of robotic manipulators into a specific position based on observed image

features (Hutchinson et al., 1996; Shirai and Inoue, 1973). Controlling based on an

error from a goal state in the image space is known as image-based visual servo con-

trol (IBVS) (Chaumette and Hutchinson, 2006, 2007; Corke and Hutchinson, 2001).

Another important field is position-based visual servo control (PBVS) where the

pose of objects in Cartesian space are estimated and used in the control algorithms

(Wilson et al., 1996).

Chaumette and Hutchinson (2006) described an image Jacobian which relates

image feature velocities with the linear and angular velocity of a camera. The im-

age Jacobian is dependent on a measurement of the depth of a feature relative to

the camera frame which is often unavailable. The depth of image features can be

obtained through stereoscopic reconstruction, although this requires more than one

camera. Often the depth is set to a constant value, such as the desired range,

which can provide reasonable performance. Several methods exist for depth estima-

tion such as partial pose estimation, adaptive depth estimation and image Jacobian

estimation (Hutchinson et al., 1996).

An IBVS control design targeted at under-actuated dynamics systems that could

operate with no feature depth measurements was shown in (Hamel and Mahony,

2002). The algorithm was a full dynamic control design suited to high-performance

systems where under-actuation must be considered. Mahony and Stramigioli (2012)

developed an IBVS control method for a dynamic system presented with the bond-

graph formalism. Their algorithm could operate in the absence of translational

camera velocity measurements and feature depth measurements.

IBVS controllers often require position or velocity measurements of the camera.

In many systems it can be difficult to obtain direct velocity measurements and they

must determined from position measurements. Numerically differentiation position

is one method of computing velocity from position, however it is sensitive to noise.

In early work by Berghuis and Nijmeijer (1993), a proportional-derivative (PD)

controller for the regulation of robotic manipulators which utilised only position

feedback was introduced. This was a novel approach as previously a controller with

a derivative term would be dependent on a velocity measurement. Mahony and

Stramigioli (2012) adapted the controller into a bondgraph in order to avoid direct

measurement of feature velocities.

A branch of modern vehicle formation control research is attempting to address

5



Chapter 2 Background 2.3 Quadrotors

the difficulty with using formation control algorithms on systems with cheap and lim-

iting sensors. IBVS control schemes are available which can operate in the absence

of both feature depth and camera velocity measurements (Mahony and Stramigioli,

2012). These algorithms show applicability to image-based formation control algo-

rithms which often already utilise IBVS based approaches for regulation of feature

positions.

2.3 Quadrotors

A quadrotor (also known as a quadcopter or quadrocopter) is an aerial vehicle

with four rotors. They benefit over other rotorcraft such as helicopters with their

simplicity of mechanical operation. Small scale quadrotors have become a popular

platform for robotics research because of their low cost and ability to fly indoors.

Quadrotors have a high power requirement which has delayed their widespread use,

however, recent improvements in battery technology has increased their popularity.

Purpose-built commercial quadrotor systems are available for applications such

as surveillance and hobbyist flying. Custom quadrotors are often assembled from

base components for tailored and high performance applications. The key compo-

nents of a quadrotor are:

Flight controller

Measures the attitude of the vehicle and controls motor actuation for stable

flight. Flight controllers can run in autonomous flight modes or connect to a

receiver for manual radio control (RC).

Motors

Four electric motors allow propellers to spin which generates thrust.

Electronic speed controllers (ESCs)

ESCs control the speed of the motors as set by the flight controller.

Power system

Powers the motors and onboard electronic systems.

Frame

Secures the major subsystems of the vehicle.

A quadrotor configured in the diamond layout is shown in Figure 2.1. In this

figure the roll, pitch and yaw axis of the vehicle are the x, y and z axis respectively

and the forward direction of the vehicle is +x. Quadrotors have two clockwise

rotating rotors on one axis and two counter-clockwise rotors on the other which are

6



Chapter 2 Background 2.3 Quadrotors

F2

F3F4

F1

yx

z

ω2

ω3 ω4

ω1

θφ

ψ

Figure 2.1: Diagram of a quadrotor showing axis of rotation, rotor directions and

thrust directions.

all pitched to give upwards thrust. This configuration induces a zero net torque and

naturally stabilises the yaw of the quadrotor when the net thrust from each axis is

equal. The vehicle yaws by changing the balance of thrust from each axis.

Roll and pitch are independent and are controlled by manipulating the thrust

between diametrically opposite rotors. If the imbalance of thrust is equal and op-

posite, the total vehicle thrust remains constant. The altitude of the quadrotor is

controlled by adjusting the net thrust of all of the rotors. A quadrotor will ap-

proximately maintain altitude if manoeuvres are confined to small pitch and roll

angles.

Minor rotor imbalances and interaction with the environment can lead to insta-

bilities. Quadrotors use stability controllers to deal with the fast vehicle dynamics

based on attitude measurements from onboard Inertial Measurement Units (IMUs).

IMUs use a variety of complementary sensors to provide an accurate attitude esti-

mate. Accelerometers measure the acceleration of the vehicle which can be used to

approximate velocity when assisted by a reference measurement.

7



Chapter 3

Formation Control Architecture

3.1 Modeling a Quadrotor and Sensors

This chapter develops the formation control architecture described in (Stacey et al.,

2013). First, a dynamic model of a vehicle is developed and the concept of bond-

graphs is introduced. The formation control algorithm is gradually developed as

further bondgraph theory is introduced. This chapter concludes with a discussion

of some of the practical issues with the architecture and introduces a modified al-

gorithm for improved practicality.

A vehicle is modelled as point masses moving in R3. Each vehicle i has an

associated mass mi, position pi ∈ R3 and orientation Ri ∈ SO(3). The energy of

vehicle i can be decomposed into kinetic energy,

Ti(ṗi) :=
1

2mi

‖miṗi‖ , (3.1)

and potential energy Ui(pi),

Ui(pi) := −migp
z
i . (3.2)

The vehicle is driven by a control force Fi ∈ R3 which is assumed to be fully-actuated

by the vehicle. The dynamics of the system are defined by

mip̈i =
δUi(pi)

δpi
+ Fi. (3.3)

The model is defined in the inertial reference frame for simplicity of analysis.

Stacey et al. (2013) represented a group of vehicles as a network graph which

described the topology of the vehicles. A topology describes the sensor relationships

between vehicles. Let Ei represent the immediate neighbours of vehicle i with a

relative position available. Let the relative position of vehicle i with respect to

vehicle j be qk = pi − pj with k ∈ Ei. The relative velocity is q̇k = ṗi − ṗj.
The space in which a measurement exists is termed the sensor space. We define

a measurement Jacobian, Nk, which relates the sensor space measurement to the

relative velocity between vehicles.

ẏk := Nkq̇k. (3.4)

8



Chapter 3 Formation Control Architecture 3.2 Bondgraph Formalism

The range between two vehicles is

rk :=
√
q>k qk. (3.5)

A bearing is defined as a unit vector in Cartesian space according to

S2 = (x, y, z)> : x, y, z ∈ R, x2 + y2 + z2 = 1. (3.6)

The bearing is

sk :=
qk
rk
∈ S2, (3.7)

and the time derivative of the bearing is

ṡk =
q̇k
rk
− ṙk
rk
sk =

1

rk

(
I3 − sks>k

)
q̇k. (3.8)

This shows that the associated measurement Jacobian (or Image Jacobian) relating

a bearing measurement to R3 is

Lk =
1

rk

(
I3 − sks>k

)
. (3.9)

The goal formation can be specified by desired relative bearings in the inertial

reference frame. The formation is invariant to scale and position if defined this way,

although rotation is constrained by the goal bearings. Let a desired bearing be s∗k.

The error between the measured bearing and the desired bearing is then

s̃k := sk − s∗k. (3.10)

It is assumed that there exists at least one formation for which all s̃k = 0. The

objective of this formation control algorithm is to converge the vehicles into such a

minimum error state.

3.2 Bondgraph Formalism

Bondgraph modelling is a graphical method of representing energy flows in systems.

Bondgraphs were first devised by Professor H. Paynter at the Massachusetts Institute

of Technology in 1959 (Borutzky, 2006). This section provides a brief introduction to

bondgraphs using formalisms from Borutzky (2006) and introduces concepts relevant

to the formation control algorithm (Stacey et al., 2013).

A bondgraph splits up a system by its subsystems and components into vertices,

or nodes. Edges, or bonds, are formed between nodes and represent energy flows

between them. Each bond has associated conjugate variables called effort, e, and

flow, f . In a translational mechanics system, the effort is associated with a force

9



Chapter 3 Formation Control Architecture 3.2 Bondgraph Formalism

and the flow with a velocity. Bondgraph modelling can be applied in many energy

domains. Bondgraphs must obey the first principle of energy conservation. The

instantaneous power transferred between components is the product of the effort

and the flow.

As power can flow in either direction between nodes, a half arrow is used to

indicate the direction of positive flow. Typically, the effort is displayed above for a

horizontal bond, and to the left for a vertical bond. Convention is to place the flow

on the same side as the half arrow.

The component in which the effort is used in the computation of the flow is

indicated in a bondgraph by a perpendicular stroke at the end of an arrow known

as the causal stroke. The model on the end of the arrow without the causal stroke

is where the effort is computed and the flow must be known.

. . .
�
�

�
�∑mech

i

iFi
iṗi

Figure 3.1: Bondgraph model of the vehicle mechanical system node.

Let
�
�

�
�∑mech

i be the mechanical system of the quadrotor. This system is shown

as a node and bond in Figure 3.1. The mechanical system is driven by a desired

control force (effort) and has an associated velocity (flow). Note that the force, and

the velocity is expressed in the body fixed frame as indicated by the left superscript.

Control inputs are typically defined in the body fixed frame for a robot.

Consider a simplistic controller for a quadrotor implementing gravity compen-

sation and velocity damping. The force and velocity variables must be transformed

between the body fixed frame and the inertial reference frame to implement these

controllers. The vehicle orientation is represented in the rotation matrix Ri. A TF

(transform) element is used to represent a reversible transformation of energy in a

bondgraph. Specifically, an MTF (modulated transform) is used if the transforma-

tion is a function of time. An MTF is used to apply the rotation matrix, Ri, to

transform the force and velocity variables between the body fixed frame and the

inertial reference frame.

A virtual damping force can be implemented as

δi = Diṗi, (3.11)

where Di is a positive definite constant matrix. This can be implemented in a

bondgraph with a dissipative element. The direction of positive flow is chosen such

that δi applies a force which opposes the direction of motion of the vehicle. The

virtual damping force is required for the system to converge, otherwise the system

10
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will oscillate indefinitely due to no loss in energy. It is not straightforward to obtain

a robust velocity measurement on an aerial vehicle and this issue will be addressed

later in this chapter.

Gravity can be compensated with a storage element, Ccomp
i , in the bondgraph.

The energy in the storage element can be described by a Hamiltonian, Hcomp
i (pi) :=

Gi − Ui(pi). Gi is a positive constant which is chosen such that Hcomp
i > 0 in the

region of operation of the vehicle. The energy will be constrained to be non-negative,

although this system would not break down if it were to go negative. The gravity

compensation element will stop providing energy to the system if the vehicle flies

too high as a result of this constraint. The effort from the gravity compensation

element is ∂Hcomp
i (pi)/∂pi = mig

z. The sign of this term is chosen according to the

orientation of the inertial frame.

�
�

�
�∑mech

i MTF
iFi
iṗi

(Ri)

1
Fi

ṗi

Di

δi = Diṗi ṗi

Ccomp
i

∂Hcomp
i (pi)/∂pi = mig

z ṗi

. . .
τi

ṗi

Figure 3.2: Bondgraph model of individual vehicle with gravity compensation and

velocity damping.

There is a force term, τi, which will be the result of interactions with the other

vehicles. The forces from all of these components will sum to give a control force,

Fi = τi −Diṗi −mig
z. (3.12)

The sum of forces can be modelled with a 1-junction in which the flows associated

with each connected bond are all equal, and the efforts must sum to zero. The

direction of positive flow must be considered when summing to zero. Another type of

junction is a 0-junction in which the efforts are equal, and the flows sum to zero. The

vehicle system incorporating the coordinate transformation, gravity compensation

and velocity damping is shown in Figure 3.2. This entire system will be represented

as
�
�

�
�∑vehicle

i in future bondgraphs.

The next step is to develop the virtual mechanical couplings between vehicles

which will drive the vehicles into formation. The goal is to minimise the error in

bearing measurement (see Equation 3.10). Firstly, the relative velocity between

vehicles is converted into a bearing using an MTF applying the image Jacobian

11
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�
�

�
�∑vehicle

i 1
τi

ṗi

links h ∈ Ei

εh ṗi

0
εk

ṗi
1

εk

ṗj

links l ∈ Ej

εh ṗj

�



�
	∑vehicle

j

τj

ṗj

MTF

εk = L>k ek q̇k = ṗi − ṗj

(Lk)

Ck

ek = ∂Hk/∂s̃k = cks̃k ˙̃sk = Lkq̇k

Figure 3.3: Bondgraph model of simple formation control algorithm.

from Equation 3.9. By noting that ṡk = ˙̃sk if s∗k is constant, ˙̃sk can be input

into a storage element Ck. The associated Hamiltonian is then Hk(s̃k) := 1
2
s̃>k cks̃k,

where ck is a positive definite matrix. This matrix acts as a gain on the virtual

energy associated with the error in bearing and will need to be adjusted in balance

with other system gains for suitable trajectories. The effort associated with this

Hamiltonian is ek := ∂Hk/∂s̃k = cks̃k which acts as a virtual force in the sensor

space.

It is convenient to think of the storage element acting as virtual spring. The

virtual force acts to direct the storage element to a minimum energy state which

corresponds to the desired bearing constrained formation. The virtual force is then

converted into a control force as

εk := L>k ek =
1

rk

(
I3 − sks>k

)
ek. (3.13)

The damping in the vehicle model (see Equation 3.11) drains energy from the system

to prevent oscillation around the minimum energy state. Conditions for convergence

are addressed in a theorem from Stacey and Mahony (2013).

The bondgraph for this system is shown in Figure 3.3. This is a fundamentally

simple and robust bearing-constrained formation control algorithm. Unfortunately,

the image Jacobian (see Equation 3.9) depends on a range measurement which is not

obtainable with a bearing-only sensor. This issue is addressed in the next section.

3.3 Adaptive Control

Stacey and Mahony (2013) appended a range observer to the formation control
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algorithm developed in the previous section. The bongraph model of this algorithm

can be seen in Figure 3.4. The derivation of this algorithm follows.

�
�

�
�∑vehicle

i 1
τi

ṗi

links h ∈ Ei

εh ṗi

0
εk

ṗi
1

εk

ṗj

links l ∈ Ej

εh ṗj

�



�
	∑vehicle

j

τj

ṗj

MTF

εk = 1
r̂k

(
I − sks>k

)
ek q̇k = ṗi − ṗj

(Lk)

1

αk = rk
r̂k
ek ˙̃sk = Lkq̇k

Ck(s̃k)
ek = ∂Hk(s̃k)

∂s̃k
= cks̃k

˙̃sk
MTF

βk = − r̄k
r̂k
ek

˙̃sk

(Ak = − e>k
cobsk r̂k

)

Cobs
k (r̄k)

∂Hobs
k (r̄k)

∂r̄k
= cobs

k r̄k

˙̄rk = − e>k
cobsk r̂k

˙̃sk

Figure 3.4: Bondgraph model of vehicle interactions with range estimation.

Let the range error be

r̄k := r̂k − rk, (3.14)

where r̂k is the estimated range and rk is the true range. The force εk is desired to

be implemented with the range estimate rather than the true range. The bondgraph

must be modified to maintain passivity of the system after making this change. A

second storage element is appended to the system, Cobs
k , which compensates for the

range error. The Hamiltonian associated with this storage element is Hobs
k (r̄k) :=

1
2
cobs
k r̄2

k, where cobs
k is a scalar constant. This will have an associated effort of

∂Hobs
k (r̄k)/∂r̄k = cobs

k r̄k. (3.15)

A 1-junction is used to connect Cobs
k with Ck and the rest of the system as shown

in Figure 3.4. The effort between the 1-junction and the image Jacobian MTF is

denoted as αk and the effort to the range error storage element is βk. The constraint

imposed in the efforts from this 1-junction is ek = αk−βk. A suitable choice for the

efforts to satisfy this relation is

αk =
rk
r̂k
ek (3.16)

βk = − r̄k
r̂k
ek, (3.17)
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which is valid as r̂k = r̄k + rk from Equation 3.14. Rearranging Equation 3.15 for r̄k

and substituting into Equation 3.17, we can see the relation

βk = − ek
cobsk r̂k

∂Hobs
k (r̄k)

∂r̄k
(3.18)

The effort βk must be transformed prior to connecting with the observer’s storage

element. An MTF is used with transfer function Ak := − e>k
cobsk r̂k

. The flow associated

with the observer is

˙̄rk = A ˙̃sk = − e>k
cobsk r̂k

˙̃sk. (3.19)

From Equation 3.14, we have the additional relation

˙̄rk = ˙̂rk − ṙk. (3.20)

It follows that the update equation of the range observer is

˙̂rk = ṙk −
cks̃
>
k

cobsk r̂k
˙̃sk. (3.21)

The range observer consists of a feedforward term ṙk and an innovation term− ck s̃
>
k

cobsk r̂k
˙̃sk.

This method is similar to what was employed for the range observer proposed by

Mahony and Stramigioli (2012) where a theorem was developed r̂ will always be

greater than zero. This is an important requirement as control forces become large

as r̂ approaches zero and a negative range estimate would lead to unpredictable

behaviour.

To summarise, a formation control algorithm has been developed which uses only

bearing measurements of other vehicles. An adaptive controller is applied to accom-

modate for the energy discrepancy from not having any range measurements. The

key equations of the vehicle model and the algorithm from Figure 3.4 are summarised

in Figure 3.5.

Simulation of the system in Figure 3.4 indicated that the range observer did not

perform as expected. It was noted in Stacey and Mahony (2013) that the range

error may not necessarily approach zero as the bearing error approached zero. The

reason is the observer is partitioned off from the system as ek approaches zero. The

range is still tracked due to the feedforward term in the range observer. Thus the

range observer is better viewed as an adaptive controller which adapts to the energy

discrepancy from the lack of range measurement.

In an implementation of this algorithm, vehicles could determine ṙk by commu-

nicating their velocities in the inertial reference frame. As previously discussed, it

is difficult to compute velocity on an aerial vehicle which is a major drawback to

this controller. The range observer requires optic flow ˙̃sk measurements which are
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The vehicle dynamics are

mip̈i =
δUi(pi)

δpi
+ Fi. (3.3)

The control force is

Fi =
∑
k∈Ei

εk −Diṗi −mig
z. (3.12)

The virtual force from vehicle link k is

εk =
1

r̂k

(
I3 − sks>k

)
cks̃k, (3.13)

where s̃k is the error from the goal bearing,

s̃k := sk − s∗k. (3.10)

The update equation of the range estimate is

˙̂rk = ṙk −
cks̃
>
k

cobsk r̂k
˙̃sk. (3.21)

Figure 3.5: Summary of formation control algorithm.

sensitive to noise such as from misdetections of markers and image quantisation.

Fortunately, the control force is not directly dependent on the optic flow and the

observer acts to low-pass filter the measurement noise in the optic flow.

This covers the extent of the research performed prior to the commencement of

this project. The next section addresses the dependency on velocity measurements

for damping the system. An alternative approach is proposed where damping occurs

in the image space.

3.4 Avoiding Velocity Measurements

In the previous system, the virtual damping force is dependant on a measurement

of the velocity of the vehicle in the inertial reference frame. As previously discussed,

it is difficult to obtain accurate velocity measurements of an aerial vehicle without

external references or costly sensor systems. A damping force is critical to the system

as it is the only source of energy dissipation and leads to asymptotic convergence of

the system. A suitable alternative is to damp the system based on the velocity of

features in the image space.

Mahony and Stramigioli (2012) developed a bondgraph implementation of the

controller found in (Berghuis and Nijmeijer, 1993). A virtual variable is introduced

which is defined such that its derivative reconstructs the true velocity signal. This

virtual variable is then used as the velocity term to damp the system. This is safer

than using a simple dissipative element which would be dependent on noisy feature
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velocity measurements.

The bondgraph of this controller from (Mahony and Stramigioli, 2012) with

some notational changes is shown in Figure 3.6. The virtual variable in this figure

is σ ∈ R3. The virtual variable is not a unit vector like the bearing measurement

due to its complex dynamics. A new node type is introduced called a conductance

where the flow is computed from the effort according to

G× flow = effort. (3.22)

The conductance connects to a storage element, Cim, which can implement the

desired regulation of the virtual variable. The dynamics of the virtual variable are

σ̇ =
1

G

(
k(s− σ)− ∂H

∂σ

)
. (3.23)

The remaining storage element drives the system to minimise the error between the

measured bearing s and the virtual variable σ by applying an image effort s − σ.

The conductance acts to dissipate energy from the system and essentially dampens

the image effort supplied by Cim.

...

0

s− σ ṡ

C :: 1
2
‖s− σ‖2s− σ

ṡ− σ̇

1

s− σ σ̇

Cim

∂H
∂σ

σ̇
G

s− σ − ∂H
∂σ

σ̇ = 1
G

(
s− σ − ∂H

∂σ

)

Figure 3.6: Feature velocity observer bondgraph (Mahony and Stramigioli, 2012).

All of the effort in this velocity controller must be computable in order for it

to be physically implementable. The bondgraph has bonds which are dependent on

the true range, which cannot be measured. The only sensible position to implement

this observer was before the storage element which implements ek seen in Figure 3.4.

A new variable σk is defined as the virtual variable for the controller as in the

derivation. Define

σ̃k = σk − s∗k, (3.24)

where σ̃k is the error between the virtual variable and the goal bearing. The Cim

storage element from Figure 3.6 when appended to the formation control algorithm

has an effort dk
2
‖σk − s∗k‖

2 which drives the virtual variable to the desired bearing.
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�
�

�
�∑vehicle

i 1
τi

ṗi

links h ∈ Ei

εh ṗi

0
εk

ṗi
1

εk

ṗj

links l ∈ Ej

εh ṗj

�



�
	∑vehicle

j

τj

ṗj

MTF

εk = 1
r̂k

(
I − sks>k

)
ck(sk − σk) q̇k = ṗi − ṗj

(Lk)

1

rk
r̂k
ck (sk − σk) ṡk = Lkq̇k

MTF

(
rk−r̂k
r̂k

)
ck (sk − σk)

ṡk

Ak = − ck(sk−σk)>

cobsk r̂k

cobsk

2
|r̄k|2 :: C

cobsk r̄k

˙̄rk = Akṡk

0

ck (sk − σk) ṡk

C :: ck
2
‖sk − σk‖2

ck (sk − σk)
ṡk − σ̇k

1

ck (sk − σk) σ̇k

G
ck (sk − σk)− dkσ̃k

σ̇k = 1
G

(ck (sk − σk)− dkσ̃k)
C :: dk

2
‖σk − s∗k‖

2dkσ̃k

˙̃σk = σ̇k

Figure 3.7: Bondgraph model of vehicle interactions with image space damping.

The flow coming out of the storage element between ṡk and σ̇k is ck (sk − σk) which

replaces the image effort, ek, applied in the original velocity damped system. This

applies an image effort to drive the measured bearing to the goal bearing which is

represented within the virtual variable. The equation of the virtual variable observer

is

σ̇k =
1

G
(ck (sk − σk)− dkσ̃k) . (3.25)

After this system is appended, the virtual force from the vehicle link and the range

observer are the same aside from a substitution of ek with ck (sk − σk) (see Fig-

ure 3.8).

The control force is no longer simply proportional to the error from the goal

bearing and its operation is not as clear as in the simpler system. A demonstration

that this bondgraph does in fact converge to a minimum error state and an analysis

of its performance is shown in Chapter 6. This modification has removed the depen-

dence on velocity measurements to damp the system. Communication of velocity

measurements remains a suitable method for computing ṙ measurements between

vehicles.
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The virtual force from vehicle link k is

εk =
1

r̂k

(
I − sks>k

)
ck(sk − σk). (3.26)

The virtual variable has update equation

σ̇k =
1

G
(ck (sk − σk)− dkσ̃k) , (3.25)

where the error between the virtual variable and the goal bearing is

σ̃k = σk − s∗k. (3.24)

The update equation of the range estimate is

˙̂rk = ṙk −
ck (sk − σk)>

cobsk r̂k
ṡk. (3.27)

Figure 3.8: Summary of formation control algorithm with image space damping.

A quirk with this implementation and the previous implementation is that con-

trol forces are inversely proportional to the range between vehicles. This means if

a formation is very large, control forces can be relatively negligible. Effective tra-

jectories and performance are still achievable with appropriate algorithm gains as

shown in Chapter 6.

In summary, the original formation control algorithm has been adapted to remove

its dependence on velocity measurements for system damping. The full bondgraph

model of this new controller is shown in Figure 3.7 with a summary of equations

presented in Figure 3.8. The algorithm is implementable with only measurements

of the the relative bearings and range velocities of other vehicles. The next chapter

develops the hardware systems required to implement the algorithms developed in

this chapter on a quadrotor.
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Chapter 4

Hardware Development

4.1 Hardware Systems Overview

This chapter covers the hardware developments required to implement the formation

control algorithm on a quadrotor. The quadrotor hardware and assembly is discussed

as well as the interaction with an external position sensor called Vicon. The primary

achivement in the hardware development is the design of a low-cost omnidirectional

vision system to detect the bearings of other vehicles.

4.2 Building a Quadrotor

A high end research oriented quadrotor was recently developed at the ANU. The

quadrotor is powered by the PX4FMU, a high end open source flight management

unit (PIXHAWK, 2013). It was developed by the PIXHAWK team from ETH Zurich

which is a research group focused on aerial vehicle localisation using computer vision

(PIXHAWK, 2013). It runs a Unix-like real-time operating system (NuttX) and

includes many useful features beyond motor control such as attitude and position

estimators and support for autonomous control.

The PX4FMU based quadrotor used AutoQuad ESC32 electronic speed con-

trollers for motor control (AutoQuad, 2013). The ESC32 firmware is open source

can be adjusted to obtain a variety of motor measurements typically not available

from an ESC, such as current and power draw. This is well suited to future and

current research at the ANU for advanced motor control algorithms that can utilise

these measurements. Custom firmware was developed for the AutoQuad ESC32s to

interface over an (Inter-Integrated Circuit) I2C bus by other researchers at ANU in

parallel with this project.

This quadrotor design was well suited to this project, although, the quadrotor

itself was not available as it was being used in other research. A new quadrotor was

assembled using the existing quadrotor as a reference design. The quadrotor was

particularly well suited due to its highly adaptable flight controller firmware and

capability of supporting a relatively large payload.
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Many quadrotor components are partially manufactured so that they can assem-

bled into a wide variety of different systems. The PX4FMU and the ESC32 required

cables and connectors to be soldered on for power and data connections. Due to a

supply issue, a custom center plate was manufactured based off the existing design.

An I2C distribution board was built to connect all of the ESC32s to the PX4FMU

which was modified over the original design for modularity. A new battery mount

was designed and laser cut which could hold two batteries which is further discussed

in Section 4.8. The arrangement of the power board and the PX4FMU was adjusted

to reduce their height above the quadrotor frame.

Figure 4.1: Photo of assembled quadrotor.

The accelerometers of the PX4FMU are calibrated by setting it level on the

positive and negative normal to each axis. Previously the PX4FMU was secured in

a makeshift shoebox design for this process which did not give very good calibration

accuracy. A box was designed and laser cut to better secure the flight controller and

ensure accurate axis alignment. The calibration was suitably accurate after only

one attempt.

Figure 4.1 shows the assembled quadrotor. In this state, the quadrotor capable of

supporting current and future research in autonomous control and high performance

control. The following sections outline the developments to append an omnidirec-

tional vision system to this quadrotor.

4.3 Vision System

The purpose of the vision system was to measure the bearings of other vehicles

in a panoramic view around the quadrotor. A major requirement for this system

was that it be low-cost so that future implementation on multiple vehicles would

be feasible. It was critical that the vision system be low weight to minimise the
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impact on the vehicle dynamics. The system needed to be robust to light impacts

and cheap to repair in the event of a crash. The vision system could also not impact

on the already low flight time of the quadrotors and had to be housed in an easily

detachable module.

The vision system was broken down into several fundamental subsystems:

Camera

Captures vision data.

Omnidirectional lens

Expands the field of view of the camera to view 360◦ around the vehicle.

Processing board

Processes vision data and also implements formation control algorithm.

Visual identification markers

Used to uniquely identify quadrotors with the vision system.

Power supply

Powers the processing board and the camera.

Mounting

Safely houses the vision system and can be easily detached from the quadrotor.

The following sections outline the hardware development process for each subsystem.

4.3.1 Processing Board

The processing board function is to process data from the camera and other sensors

and compute control forces from the formation control algorithm. Several critical

system requirements had to be met to ensure the vision system was practical for im-

plementing the algorithm. A key requirement was support for a software framework

called Robot Operating System (ROS) to align with existing systems and simplify

development. Additionally, support for the Open Source Computer Vision Library

(OpenCV) was highly desirable for the system.

The metrics for the processing board, listed in descending order of importance

were:

1. Architecture/Operating System - A x86 or x64 processor architecture and

Linux support was essential for use with the desired tools.

2. Interfaces - Suitable interfaces for communicating with a camera and the

PX4FMU must be available.
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3. Size/Weight - Small size and low weight were desirable to minimise the impact

on the dynamic performance of the quadrocopter.

4. Power - Low voltage is beneficial to simplify regulation and reduce the size of

the power supply. Low power draw improves the flight time.

5. Processing Power - A high performance Central Processing Unit (CPU) sup-

ports the use of more advanced computer vision algorithms at high frame rates.

A Graphical Processing Unit (GPU) could be beneficial over a CPU for some

computer vision tasks.

Boards that did not meet the processor architecture and operating system re-

quirements were discarded due to potential toolchain issues and lack of support

for ROS. A GPU is a non-essential component, but could provide performance en-

hancements. A GPU needed to support CUDA or OpenCL otherwise it could not

be used with OpenCV. Other key metrics such as processing power were used in

sifting through boards. Several processing boards were shortlisted for possible selec-

tion as shown in Table 4.1. The shortlisted boards were the Commell LP-180 and

LP-170 (COMMELL, 2013), SECOnITX-ION (Seltech International, 2013) and the

VIA EPIA P910 (VIA Embedded, 2013). All of these boards had an x86 processer

architecture and supported Linux. Some weight metrics were not obtainable and

were estimated based on their size.

Table 4.1: Comparison of processing boards

PROCESSING

BOARD

COMMELL

LP-180*

COMMELL

LP-170

SECONITX-

ION

VIA EPIA

P910

Interfaces USB 2.0, GB

Lan, serial

USB 2.0, GB

Lan, serial

USB 2.0, GB Lan,

GPIO, serial

USB 3.0, GB

Lan, GPIO

Size 100x72mm 100x72mm 120x120mm 100x72mm

Weight 150g 150g 250g 160g

Power 5V 12V 12V 12V

CPU 2x1.65GHz 2x1.8GHz 2x1.9GHz 4x1GHz

GPU AMD Intel NVIDIA VIA GPU

Availability Ordered In lab Poor Good

* Chosen processing board.

A notable range of boards that were not listed were those made by Gumstix

(Gumstix, 2013). Gumstrix boards use an ARM architecture and are extremely

small, low weight and have very low power consumption. They have been demon-

stated running unofficial ARM builds of Ubuntu and have managed to run ROS and

OpenCV. Despite these apparent advantages, they were not used due to the ARM

architecture had many toolchain issues and their performance was deemed not quite

satisfactory for the required applications.
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Shortlisted boards had mostly comparable metric performance. The only GPUs

that were likely supported by OpenCV were the AMD and NVIDIA GPUs in the

LP-180 and SECOnITX-ION. Although the GPU on the SECOnITX-ION would

have likey been the easiest to develop on, it was discarded due to tis larger size and

weight.

The remaining boards were the Commell LP-180, LP-170 and the VIA EPIA-

P910. The LP-180 had an AMD GPU that supported OpenCL for OpenCV, whereas

the EPIA-P910 had a poorly supported proprietary GPU. The low voltage requir-

erement for the LP-180 allowed for a smaller power supply and simpler voltage

regulation. It was primarily for this reason that the LP-180 was chosen for use. The

LP-180 was also the cheapest of all the boards at approximately $225, comparatively

cheap compared to the EPIA-P910 at approximately $360 and the SECOnITX-ION

at up to $800.

The LP-180 required a data storage device and a Random Access Memory (RAM)

stick to function. A Hard Disk Drive (HDD) would not be suitable due to high

weight and potential for damage from fast movements and impacts. A Solid State

Drive (SSD) is more robust, weights less than a HDD, and was ideal for use. Also,

SSDs have very fast read and write times and are well suited to real-time video

logging. 60GB was suitable size for the expected applications of the vision system.

Appropriate RAM was identified with high clock speed prioritised over latency.

Additional components purchased were USB cables and a WiFi adapter. The final

cost of all components was approximately $350.

ROS only supports Unix-like systems, and only officially supports Ubuntu Linux

based distributions. For this reason, an Ubuntu based distribution was installed on

the LP-180 to ensure robustness and minimise potential development issues. Several

distributions were investigated and a lighweight variant of Ubuntu was selected

called Xubuntu (Xubuntu, 2013). A 32-bit long term support release (Xubuntu

12.04.2) was used. The ROS Groovy Galapagos distribution was installed (targeted

at Ubuntu 12.04), which was the latest version at the time of installation (Willow

Garage, 2013).

4.3.2 Camera

The camera acquires vision information and sends it to the processing board. Metrics

were identified taking into consideration the high level system requirements of the

vision system.

1. Interface - The camera must have an interface suitable for communication with

the LP-180.

23



Chapter 4 Hardware Development 4.3 Vision System

2. Frame rate - A high frame rate is needed for future projects that will utilise

this system.

3. Resolution - A high resolution is beneficial for robust feature detection.

4. Global shutter - A global shutter exposes the entire frame at once eliminating

distortion from fast motions or vibrations.

5. Size, weight and ease of mounting - Low size and weight is desirable along

with a simple method of mounting the module.

6. Chroma - A colour camera is beneficial over a monochromatic camera for

feature identification.

7. Low light performance - This improves with a larger sensor size which enhances

feature identification robustness.

8. Power - Low power draw is desirable, alongside the capability of being powered

through the processing board.

9. Lens mount - Support for multiple lens mounting interfaces increases the range

of lenses that can be used.

If cameras did not have USB or GB Lan interfaces, did not have global shutter

or did not support RGB colour they were discarded immediately. Frame rate and

resolution had to be balanced due to bandwidth constraints, particularly over the

USB interface. The remaining metrics were used to help with final decisions. A

shortlisted selection of cameras is shown in Table 4.2. The shortlisted cameras were

the PointGrey FireFly and Flea3 (PointGrey, 2013), IDS UI-1221LE (IDS, 2013)

and the mvBlueFox-MLC (MATRIX VISION GMBH, 2013). All of the shortlisted

cameras were colour cameras. Power usage and supply requirements were generally

negligible and are not shown in the table, however the PointGrey Flea3 did require

an external power supply.

The main disadvantages of the PointGrey FireFly was its low resolution when

running at a high frame rates, and it was comparitively large and heavy compared

to other cameras. The PointGrey Flea3 had a high quality Sony sensor and could

run at an impressive 120Hz at 646x488px. This camera was very expensive so it was

excluded.

The IDS UI-1221LE-C-HQ and Matrix Vision mvBlueFOX-MLC200wC cameras

were nearly identical and used very similar sensors. They both outperformed the

PointGrey FireFly in frame rate at their maximum resolution. The mvBlueFox was

selected primarily because of its substantially lower cost of $300 including accessories

over the IDS camera at over $700. An additional benefit of selecting the mvBlue-

Fox was that it offered several lens mount options which gave more flexibility in

lens choices. Furthermore, the cameras had an impressively low weight and were

relatively low-cost compared to other potential solutions.
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Table 4.2: Comparison of cameras

CAMERA POINTGREY

FIREFLY

POINTGREY

FLEA3

IDS UI-

1221LE

MVBLUEFOX-

MLC200WC*

Interface USB/ Firewire GB Lan USB USB

Frame rate mina 60 31

Frame rate maxb 122 120 87.2 90

Resolution min 320x240 648x488

Resolution max 752x480 1032x776 752x480 752x480

Shutter Global Global Global Global

Weight 37g 38g 16g 10g

Sensor size 1/3” 1/3” 1/3” 1/3”

Lens mount C/CS-mount C/CS-mount S-mount C/CS/S-mount

* Chosen camera.
a Frame rate when operated at maximum resolution.
b Maximum frame rate achievable at minimum resolution without pixel binning.

Several mvBlueFox cameras were obtained along with attachments to support S

mount and C mount lenses. Lenses were purchased with focal lengths of 2.8mm and

4mm to provide a reasonable level of versatility. Drivers for the mvBlueFox were

installed on the LP-180 which functioned as expected. This camera met all of the

key requirements with a suitable resolution and frame rate.

4.3.3 Omnidirectional Lens

The purpose of the omnidirectional lens is to allow the camera to capture images

from a 360◦ panoramic view around the quadrotor. It was critical that the lens

provided a good field of view above and below the plane of the vehicle. A typical

low cost solution for an omnidirectional vision system is an ultra wide-angle fisheye

lens. A more effective solution is a catadioptric lens system where a camera is

directed towards an arrangement of mirrors.

The metrics for an omnidirectional lens were identified as:

1. Weight - The weight needs to be low to minimise the impact on vehicle dy-

namics.

2. Vertical field of view (FOV) - A larger vertical field of view minimises the risk

of other vehicles moving out of view.

3. Cost - A low cost solution is desirable due to the high risk of damage.

4. Image quality - Good image quality with low distortion will improve the ro-

bustness of feature detection algorithms and give more accurate bearing mea-

surements.
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5. Ease of mounting - How easy is it to mount the lens to the camera.

6. Calibration - Calibration should be easy to do, accurate and easily imple-

mented.

Several commercial solutions were investigated alongside a custom solution util-

ising a spherical mirror and their performance is shown in Table 4.3. A high end

solution was a lens from Kumotek (KumoTek, 2013), and a comparatively cheaper

solution was the Bloggie Panoramic Lens (Sony, 2013).

Table 4.3: Comparison of omnidirectional camera solutions

METHOD KUMOTEK VS-

C450MR-TK

FISHEYE

LENS

SPHERICAL

MIRROR*

BLOGGIE

PANORAMIC

Mounting C/CS mount C/CS mount Custom Custom

Price $1000 $20 $40 $83

Type Central Central Non-central Unknown

FOV up 15◦ 90◦ 45◦ 45◦

FOV down 60◦ 2.5◦ 65◦ 15◦

Image quality High Low at edges Low at edges Medium

* Chosen omnidirectional vision solution.

The Kumotek solution used a custom manufactured parabolic mirror which

would provide the highest quality image. However, it was limited by a poor up-

wards field of view and an unreasonable price. A fisheye lens was not suitable as it

would not provide a sufficient field of view below the quadrotor. The Sony Bloggie

panoramic lens was relatively low cost and had impressive image quality. Unfortu-

nately its downwards field of view was not ideal, although it was potentially usable.

It was decided to design a low cost custom solution to compete with the Sony Bloggie

Panoramic Lens.

An omnidirectional camera is classified as central (as opposed to non-central) if

the optical rays coming from the camera that are reflected by the mirror intersect at

a unique point. An omnidirectional camera can be calibrated to retrieve a projection

function which maps image points to bearings on a unit sphere. The majority of

calibration techniques rely on the assumption of a central system which is only

achievable if using an elliptic, parabolic or hyperbolic mirror. No mirrors could be

obtained at low cost and low weight that would have provided a central system so

spherical mirrors were assessed.

Spherical mirrors of a wide variety of diameters and curvatures were benchmarked

with lenses of varying focal lengths. The interest metrics were the vertical FOV

obtainable, the mirror weight and the required distance between the mirror and the

camera lens. A major challenge was identifying a mirror that provided a good field of
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view when placed beyond the minimum object distance from the lens. Fortunately,

a configuration was identified which theoretically provided a better field of view

than the Sony Bloggie lens. The identified configuration used a 25mm diameter

mirror with a 15.5mm radius placed approximately 45mm from a 4mm focal length

lens. A physical test was required to verify the FOV and focusing ability in this

configuration as the optics could not be perfectly modelled.

A lens system to hold the mirror above the camera was designed as a computer

aided design (CAD) model. A laser cut frame holds the camera and provides an

attachment point for an acrylic tube which extends to the mirror. The CAD model

and assembled omnidirectional lens can be seen in Figure 4.2. The lens had be

displaced almost as far away from the sensor as was possible to focus on the mirror

at such a short distance.

Figure 4.2: Omnidirectional lens CAD design (left) and assembled omnidirectional

system with camera (right).

Images obtained with the Sony Bloggie lens and the custom system are shown in

Figure 4.3. A large high end parabolic mirror system is also shown for comparison

which could not be implemented on a quadrotor. The spherical mirror system image

is taken using the mvBlueFox camera inside the custom mount. The Sony Bloggie

Lens and parabolic mirror system images were captured with a phone camera. Note

that the Sony Bloggie image does not have perfect focusing in this figure which is

due to the use of a non ideal lens and misalignment. If used with a Sony Bloggie

camera, the Bloggie panoramic lens gives a high quality image over its entire FOV.

The custom solution seen in subfigure (b) of Figure 4.3 was able to identify

markers at up to 65◦ below the vehicle. This was far superior to the Sony Bloggie

panoramic lens in subfigure (a) which could only identify markers at up to 15◦

below the vehicle. The upwards field of view of the two solutions was identical at

approximately 45◦. The custom solution experienced notable distortion at the edges
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(a) Sony Bloggie Panoramic

Lens

(b) Custom catadioptric

system with spherical lens

(c) High end catadioptric

system with parabolic mirror

Figure 4.3: Comparison of images from different omnidirectional vision systems

of the image which is a limitation of using a spherical mirror. Blurring at the edges

of the image with the spherical mirror solution were due to the small depth of field

of the camera lens. Neither of these solutions could compete with the image quality

of the parabolic mirror system in subfigure (c).

The custom solution was the lowest cost and was easily assembled and repaired.

Distortions and imperfect blurring were not a major issue since the detection was

colour based rather than pattern based. For this reason the custom solution was

selected for use.

4.4 Vehicle Markers

Vehicle markers are used for unique visual identification of other quadrotors in the

environment. The metrics for vehicle markers were:

1. Unique identification - The markers must be able to uniquely identify vehicles.

2. Ease of detection - The markers need to be easy to detect using computer

vision.

3. Performance over varying lighting conditions - The markers should be robustly

detectable over a reasonable range of lighting conditions.

4. Ease of manufacture and mounting - The markers should be easily mounted

and manufactured or configured as appropriate.

5. Weight - The markers should have a relatively low weight.

High level detection processes could not be implemented because of the limited

computational power of the processing board. For this reason, simple and highly

visible markers were essential. The three most applicable marker types identified

were coloured lights, coloured markers and infrared (IR) markers. The performance
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metrics of the markers were difficult to quantify, so a qualitative analysis was per-

formed.

Infrared markers are easily detectable with an IR camera but are primarily only

suitable in indoor environments. There is no simple way to uniquely identify the

vehicle corresponding to an IR marker. Detecting a specific marker shape of unique

geometric arrangement of markers would be difficult, particularly from a single view-

point. For this reason, infrared markers were not appropriate.

Coloured lights and coloured markers were the easiest to uniquely detect by

assigning a unique colour to each marker. Coloured markers were a simple solution,

however, coloured lights had the benefit of improved visibility and robustness over

varying lighting conditions so were selected on this basis.

An I2C controlled RGB LED called the BlinkM was selected for use (ThingM,

2013). Its colour could be controlled directly by the PX4FMU or through a USB

to I2C convertor with the LP-180. The quadrotor system has multiple 5V sources

capable of powering the BlinkM and a 5V coin battery would also be suitable. A

marker could be attached to the vehicle above the mirror of the omnidirectional lens

for maximum visibility.

These markers were tested in an experiment which is detailed in Section 5.2.3.

The markers were stationary and were powered by an Arduino, a low cost and easily

programmable microcontroller board. A BlinkM was not implemented on an actual

quadrotor as experimentation was only performed with a single quadrotor. Testing

showed that dissipating the light with translucent balls was effective for detection

from a wide range of angles. However, this was not effective at ranges over 2.5

metres due to the limited resolution of the camera.

4.5 Vicon Motion Capture System

The flying laboratory at ANU has a Vicon motion capture system which is used to

measure the position and orientation of objects at 200Hz (Vicon Motion Systems

Ltd, 2013). The Vicon motion capture system uses IR cameras to detect objects in

its environment. Objects are fitted with IR markers in unique geometric arrange-

ments which allows detection of multiple objects simultaneously. Only 3 markers

are required to identify the pose of a vehicle, however more markers allows detec-

tion even under occlusion of some markers. Vicon has sub-mm accuracy, but error

increases in situations where objects are viewable with a small number of cameras

or markers are occluded.

Vicon is a popular tool in robotics as a real-time position sensor and also for

logging vehicle positions for analysis. Data can be transmitted from the Vicon
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ground station over a WiFi or Ethernet connection. The Vicon system was used

for obtaining velocity measurements of the quadrotor in real time for input into the

algorithm. A number of community contributed ROS packages exist for real time

data acquisition which wrap the Vicon Application Programming Interface (API).

The Vicon ROS package used and modifications that were made to it are discussed

in Section 5.3.

4.6 Inter-vehicle Communications System

The formation control algorithm can use an inter-vehicle communications for com-

municating velocities. The goals of an inter-vehicle communications system are to

have a lightweight close range communication system with high reliability. A single

quadrotor system was used for this project, and as such an inter-vehicle communi-

cations system was not implemented.

A suitable platform for inter-vehicle communications in future experiments was

identified as the WiFly module by Roving Networks (Microchip, 2013). WiFly is

a low cost and low profile module that allows wireless communication of serialised

data using the Wi-Fi protocol at up to 464kbps. The device is driven through a

serial interface which is on both the PX4FMU and the LP-180. Researchers at ANU

already use this module to send IMU data from the PX4FMU to a base station.

4.7 Interfacing with Quadrotors

The formation control algorithm requires measurements of the attitude and velocity

of the vehicle and implements a control force. The PX4FMU can transmit these

measurements as well as take in external control commands using the MAVLink

protocol. MAVLink is a protocol for transferring messages which was developed by

the PIXHAWK team. The LP-180 connected to the PX4FMU over USB through a

USB to UART converter. Alternatively, the serial ports on the LP-180 could have

been level shifted and connected directly to the PX4FMU for a small weight saving.

This would have required some custom wiring, but was not attempted as the USB

solution simply worked. A ROS package is used to handle the MAVLink protocol

and communicate over the serial port which is outlined in Section 5.4.

4.8 Power System

The quadrotors have a high power requirement and offer a flight time of less than 10

minutes. It was not reasonable to power the LP-180 with the same battery as the
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flight time would drop further and continually having to reboot the LP-180 would

be problematic. Additionally, voltage fluctuations from varying motor power draw

may have caused stability issues. To improve the usability of the system, the LP-180

was powered by a separate battery from the rest of the quadrotor.

A 1300mAh 7.2V Lithium-Polymer (LiPo) battery was used which was regulated

to 5V for the LP-180 using a commercial switching regulator. The voltage regulator

had major heat dissipation issues despite being rated to 5A (the rated peak draw of

the LP-180) and supporting up to 7.5A. This was resolved by mounting the regulator

underneath a propeller. The maximum battery life was not tested, however the LP-

180 was used through a full length flight test with plenty of charge remaining. LiPo

batteries are widely used on quadrotors due to their high energy density, but they

can be combust if damaged or not used correctly. The batteries were mounted

securely and safe from direct impacts which is described in the next section.

4.9 Mounting System

The mounting system houses the vision system in a module which can be easily

attached or detached from the quadrotor. The quadrotor was going to be used in

other research projects and so the vision system had to be easily removable. To

align with the rest of the goals of this system, the mounting module had to be low

cost and low weight. The vision system could not bring the centre of gravity of

the vehicle too high as this would negatively affect the stability of the quadrotor.

Lastly, the module needed to be easily repairable and replaceable due to the high

risk of crashing on a quadrotor.

A custom module was designed to connect to the quadrotor frame and house

the vision system. The entire system, including the quadrotor and all supporting

components, was drafted using computer aided design (CAD) software. The vision

system module mounted on the quadrotor can be seen in Figure 4.4. The design

consisted of vertically stacked flat layers separated by spacers which housed the

components. The module was laser cut out of Medium-Density fibreboard (MDF)

and could be assembled primarily by just screwing spacers between layers and com-

ponents. Legs were glued to the module which extended to the quadrotor frame.

The legs were screwed on to the quadrotor frame which made the module easy to

add or remove from the quadrotor.

It was desirable for the mounting system to fail first while protecting the expen-

sive components housed inside. Plastic screws were used in several locations so that

the module would simply break off rather than causing jarring impacts. The spacers

provided some protection to the important components from the propellers in the
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Figure 4.4: Vision system module CAD (left), assembled module (middle) and

quadrotor with vision system mounted during flight test (right).

event of a failure.

A custom battery mount was designed to secure the two batteries and also to

act as a landing frame. It was required to be relatively tough so it was made out

of acrylic providing more strength over MDF while still being relatively cheap. As

with the rest of the mounting hardware, it was laser cut providing low cost and

rapid replacement.

The quadrotor was tuned for flight with and without the vision system mounted

for stable, yet suitably agile flight. A quaternion based attitude controller developed

at ANU was used on the PX4FMU as it required tuning of only three gains. Fig-

ure 4.4 shows the quadrotor design flying under manual RC with the vision system

mounted. This test was just to verify the quadrotor was functioning and the vision

system was not yet operational. A flight test in which the vision system is run-

ning and all onboard measurements are being obtained is discussed in Section 6.2.

The next chapter highlights the software developments that were needed to acquire

sensor measurements and interface the vision system with the quadrotor.
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Chapter 5

Software Development

5.1 Software Systems Overview

This chapter discusses the software developments that were required for the im-

plementation of the formation control algorithm on the quadrotor. The software

developed is built upon an open-source software framework called Robot Operating

System (ROS) designed for use with robots (Willow Garage, 2013). ROS abstracts

applications into nodes which perform functions such as reading sensor data and

passing messages between each other through topics. Packages of nodes are avail-

able developed by both Willow Garage and the community which provide an array

of functionality to a wide variety of robot systems.

MVBlueFox

camera

mv bluefox driver

•captures images

USB ball detector

•marker detection

/image raw

Vicon base

station

vicon bridge

•vehicle position data

WiFi

PX4FMU
mavlink ros

•offboard control

RS-232

formation control

•main algorithm

•yaw controller

•height controller

•force actuation

/vicon
/bearings

/fcu/imu

/offboard

Quadrotor

control

I2C

BlinkM I2C

RGB LED

I2C

LP-180

Figure 5.1: Overview of interaction between ROS nodes (dashed) and hardware

(solid). Edge labels represent physical interfaces or ROS topics if prefixed with ’/’.

An overview of the interactions between hardware and software systems is shown

in Figure 5.1. Existing ROS nodes with only minor modifications were used for in-

terfacing with the camera, Vicon and the PX4FMU flight controller. A custom ROS

node ’ball detector’ was developed for detecting markers in an omnidirectional image
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and publishing their bearings. The formation control algorithm and implementation

specific controllers are in a custom ROS node called ’formation control’.

5.2 Bearing Measurements

This section outlines the new developments for obtaining bearing measurements

using the camera. An existing camera driver was used, although modifications were

made to increase its utility. The omnidirectional lens was calibrated in order to

provide a transformation from pixel coordinates into 3D bearings. A simple, fast

and robust detection algorithm was developed using OpenCV to detect the pixel

coordinates of markers. The marker detection algorithm and bearing conversion

code was implemented in a custom node called ’marker detector’.

5.2.1 Camera Driver

The ’mv bluefox driver’ package by Carlos Jaramillo was used for obtaining im-

ages from the camera (Jaramillo, 2013). The package provides conveniences such

as automatic camera initialisation and simple parameter setting over directly using

the mvIMPACT Acquire API. A downside of the package was that some important

parameters were not exposed which limited the acquisition of images to 50Hz. Mod-

ifications were made to directly expose control of gain, exposure time, pixel clock

and region of interest (ROI) to obtain images at 90Hz. The modifications can be

seen in Appendix B.1.

5.2.2 Camera Calibration

The purpose of omnidirectional camera calibration is to map pixel coordinates to

bearings. This mapping must take into account distortions such as a shift in the

optical centre and radial distortion alongside standard camera distortions. There are

several open-source toolboxes which perform calibration of omnidirectional cameras.

The Omnidirectional Calibration Toolbox from the from the Active Vision Group

at the University of Oxford was tested as it indicated support for spherical mir-

ror systems (Mei, 2013). Unfortunately, the automatic corner detection performed

poorly and there was no user friendly way of manually picking corners with this

toolbox. Furthermore, the provided C++ functions for converting pixel coordinates

to bearings were poorly documented, so it was not used.

The omnidirectional camera was calibrated using the OCamCalib Omnidirec-

tional Camera Calibration Toolbox for MATLAB (Scaramuzza, 2013). The toolbox

effective calibrated the system and provided well documented C++ functions for
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pixel to bearing mapping that were easily implemented in the ’marker detector’

ROS node. The calibration should have been poor as it was designed for a cen-

tral system and the custom omnidirectional system was not central. However, the

accuracy was quite good as demonstrated in an experiment detailed in the next

section.

5.2.3 Marker Detection

The requirements of the marker detection algorithm were to provide robust and

fast detection of multiple coloured markers. The detection process for colour based

tracking algorithms is typically done in a colour space where hue is independent

of intensity and saturation, such as the HSV colour space. Several existing colour

tracking algorithms were investigated, but were not implemented as they were too

computationally expensive or not well suited to a catadioptric image.

RGB image HSV image ROI (HSV) Segment Centroid

Figure 5.2: Simplified graphical representation of marker detection algorithm.

An algorithm was written in OpenCV to detect markers which is graphically

detailed in Figure 5.2. The algorithm was fundamentally very simple in order to

run efficiently on the LP-180. First, the tube and camera is masked, then the image

is converted into the HSV colour space. A binary segmentation is applied to a Region

Of Interest (ROI) around each marker which is chosen based on the location of the

previous measurement. The centroid of the largest blob in each marker segmentation

was then converted to a bearing and published as a ROS message.

If the segmentation was attempted on the whole image the frame rate was ap-

proximately 35Hz on the LP-180 with 3 markers. Carrying out the segmentation

on a ROI around the previously detected position improved performance to ap-

proximately 55Hz. This was a suitable update rate for the implementation of the

formation control algorithm. OpenCV did not yet officially support a GPU based
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transformation to HSV through OpenCL so all computation was done on the CPU.

An output showing the computed centroids for each marker is shown in Figure 5.3.

Note that the second marker is only just visible at 45◦ above the mirror.

Figure 5.3: Image of marker detection with correct detection of 3 numbered mark-

ers placed 60 degrees below, 5 degrees below and 45 degrees above respectively.

The effectiveness of the solution was assessed by comparing measurements ob-

tained with the vision system to ground truth measurements obtained using Vicon.

In this experiment, three markers were placed around the Vicon flying space at

varying heights and their positions were recorded. The quadrotor was manoeuvred

around by hand in the flying and the pose from Vicon was logged. The position of

the quadrotor was determined using Vicon and used to compute the relative bearings

to the markers decomposed into azimuth and elevation. The bearing measurement

from the vision system was transformed from the body fixed frame to the inertial

reference frame of the Vicon system using roll and pitch from the PX4FMU and

yaw from Vicon. The reason these measurements were used is discussed later in

Section 5.4.

Figure 5.4 shows the error between bearing measurements obtained from the

vision system and ground truth measurements obtained from Vicon data. Missing

data points occur where a marker is not observable to the camera. The azimuth

shows good accuracy throughout the experiment with a mean error of −0.83◦ (SD

±1.23◦). The largest inaccuracies observable in the figure occurred when there was

a large delay in the yaw measurement from Vicon.

The elevation error is shown in Figure 5.5. The elevation shows good accuracy

despite the calibration not being ideal for a spherical mirror system. The mean

elevation error was 0.71◦ (SD ±1.54◦). This experiment had several sources of error
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Figure 5.4: Error in azimuth bearing measurements between the vision system

and Vicon.
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Figure 5.5: Error in elevation bearing measurements between the vision system

and Vicon.

such as limited image quality and imprecisely measured marker positions.

There are occasional misdetections which lead to large deviations from the true

value. These were relatively rare and the robustness during a long flight test can

be observed in Section 6.2. Misdetections are not completely avoidable with such

a low image resolution and simple computer vision technique. To counteract this

issue, false bearings could be detected by thresholding based on the deviation from

previous bearing measurements and discarded if appropriate. Misdetections were

rare enough that this was not implemented, however it would be simple solution

if misdetections occured over small periods. Synthetic measurements from Vicon

could have been used in the event of an extended failure.
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5.3 Vicon Velocity Measurements

Velocity measurements are needed to compute the ṙ measurement between vehicles.

This is a difficult measurement to obtain reliably on an aerial vehicle, so Vicon was

used to retrieve these measurements. The ’vicon bridge’ ROS package by Markus

Achtelik was used to interface with the Vicon system (Achtelik, 2013). The package

receives pose measurements, but does not receive direct velocity measurements.

The difference in time between measurements must be known to compute ve-

locity. Timestamps on received messages are unsuitable because measurements are

received at time-varying varying rates over the channel. The latency compensated

timestamps in ’vicon bridge’ showed similar levels of noise as just using arrival times-

tamps. ANU researchers previously assumed ∆t to be constant which provided

better results than using the timestamp methods.

This assumption was reasonable when using a wired link to Vicon. Unfortu-

nately, this assumption lead to large spikes when using a wireless channel where

measurements are often dropped and packets can even arrive in the wrong order.

Additionally, measurements are also not published if a vehicle is occluded. The

quadrotor implementation for this project was the first system in use at ANU which

had to retrieve Vicon measurements over a wireless link without an intermediate

ground station. A new method of computing velocity was investigated to provide

more robust velocity measurements over the other methods.

Vicon publishes an incrementing frame number with each measurement. This

number is retrieved by ’vicon bridge’, although it is not included in the message

containing full pose measurements. Under the assumption that Vicon takes a mea-

surement at a constant rate (every 0.005s), the change in time could be computed

based on the change in the frame number. A simple modification to ’vicon bridge’

replaced the timestamp present in the header of the message with the Vicon frame

number as shown in Listing 5.1.

Listing 5.1: Code appended after line 488 of vicon bridge/src/vicon bridge.cpp.

1 pose msg−>header.stamp=(ros::Time)lastFrameNumber;

Figure 5.6 shows a comparison between the new and old methods during a period

of 8% packet loss. For comparison, there was a period of 50% packet loss over 10

seconds which produced spikes in the other methods of up to 110m/s. It is clear

that the new method is far superior to the previous method with comparatively

negligible noise and the assumption that Vicon took measurements at a constant

rate was valid. Despite the simplicity of this method, it can provide very robust

measurements.
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Figure 5.6: Comparison of velocity measurement methods during a period where

8% of measurements were dropped.

Vicon bridge offered two modes of operation, ’ClientPull’ and ’ServerPush’. Mea-

surements obtained using ’ServerPush’ often arrived in bursts of 2-4 which gave an

effective measurement rate of approximately 50Hz rather than 200Hz. When using

’ClientPull’, the measurements arrived at a relatively steady rate although with a

higher latency as mentioned by the vicon bridge developer. The delay was not quan-

tified, however in later experiments there was no observable delay when compared

with attitude measurements from the PX4FMU.
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Figure 5.7: Comparison between raw velocity measurement based on frame number

and low pass filtered measurement during actual flight test.

A key observation was that velocity measurements were relatively smooth if

motors were off and a vehicle was moved manually which was the protocol of the

experiment in Figure 5.6. The noise level increased in an actual flight test as can

be seen in Figure 5.7, although it was still relatively small. This experiment was

conducted on a quadrotor being used in other research. This noise was likely the
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result of vibrations induced by the motors and was reduced by applying a low pass

filter to the incoming measurements (see Figure 5.7).

5.4 Attitude Measurements

Vehicle attitude measurements are required in computing the transformation be-

tween the body fixed frame of the vehicle and the inertial reference frame. IMU

measurements from the PX4FMU were obtained using the mavlink ros ROS node

provided by the pixhawk team. The node publishes IMU information that is trans-

ferred from the PX4FMU over the MAVLink protocol using the ATTITUDE message

type. Attitude measurements were obtainable at 20Hz at a baud rate over the serial

interface of 115200Hz. This is an imposed rate in the PX4FMU associated with that

baud rate, although higher baud rates were not tested.
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Figure 5.8: Attitude measurements obtained from Vicon and the PX4FMU.
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The inertial reference frame differs between the IMU and Vicon such that they

give different yaw measurements, however pitch and roll measurements are directly

comparable. Figure 5.8 shows a comparison between roll, pitch and yaw measure-

ments obtained from the PX4FMU and Vicon. The PX4FMU measurements do

not experience communication dropouts or large noise spikes as was observed when

Vicon mistakenly detected another object in the environment. The Vicon mea-

surements indicated that the pitch and roll measurements from the PX4FMU were

accurate. However, the yaw measurements from the PX4FMU did not match the

shape of the real yaw of the system as indicated by Vicon (see Figure 5.8).

Yaw measurements on the PX4FMU are obtained from an extended Kalman

filter which combines measurements from onboard gyroscopes, accelerometers and

magnetometers. It is likely that the magnetometer is receiving inaccurate measure-

ments because of its close proximity to the SSD. Since the yaw from the PX4FMU

is unsuitable, the yaw from Vicon is used in computing the transformation from the

body fixed frame of the camera to the Vicon frame. The PX4FMU pitch and roll

measurements are also used to compute the transformation due to their consistent

time of arrival and high accuracy.

5.5 Height and Yaw Controller

It was desirable to decouple height from the algorithm for early testing so that

the algorithm was unaffected by oscillation in height and bias in bearing elevation

measurements. A modified Proportional-Derivative (PD) controller to stabilise the

quadrotor at a suitable height is suggested. The equation of the PD controller is

T = Kpe(t) +Kd
d

dt
e(t) +Kgrav, (5.1)

where T is the thrust, e(t) = p∗z − pz is the error from the desired height, Kp is

the proportional gain, Kd is the derivative gain and Kgrav is a feed-forward term to

counteract gravity.

This simple controller ignored effects including reduced motor power (as battery

voltage dropped) and ground effect. This controller was not tested due to time

constraints, but was verified in simulation. The gains would need to be determined

experimentally for an implementation. In future, the gravity compensation compo-

nent of the formation control algorithm could be used which will require testing to

relate the thrust set point to the applied thrust.

Another controller was suggested to correct the vehicle yaw to a desired yaw in

the Vicon frame defined as

ψsp = ψIMU +K (ψ∗V icon − ψV icon) , (5.2)
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where ψsp is the yaw setpoint, ψIMU is the yaw from the IMU, ψV icon is the yaw

measured in Vicon, ψ∗V icon is the desired yaw in Vicon and K is a proportional gain.

This controller was also not tested because of time constraints.

5.6 External Control

Previously researchers implemented control algorithms by sending control com-

mands through an RC controller connected to a base station. To implement the

formation control algorithm, a method of sending control commands without a base

station was required. The MAVLink protocol supported communication of external

control measurements which could be done through a serial interface between the

LP-180 and the PX4FMU. However, the PX4FMU state machine for handling flight

modes did not handle offboard control messages, despite the onboard MAVLink and

actuator modules supporting it.

A new state was implemented to enable offboard control. It took care of arming

the vehicle, setting the flight mode, and enable control of the actuators with offboard

signals. The state machine was designed so that an RC controller could instantly

take control by toggling a switch. In the event of a dropout, the quadrotor would

immediately stabilise and switch to RC until autonomous control was re-enabled

with the RC controller.

The ’mavlink ros’ node was used for sending the MAVLink control messages.

The roll, pitch, yaw and thrust setpoints of the vehicle could be set using the

SET QUAD SWARM ROLL PITCH YAW THRUST MAVLink message type if off-

board control is enabled. These setpoints are parsed into an attitude controller

on the PX4FMU which applies a rate controller. A small modification to the

’mavlink ros’ package was applied to directly publish the control messages rather

than utilise the generic MAVLink message publishing function. This modification

was introduced because of a issue in producing the correct MAVLink packet struc-

ture in the formation control node that was not identified.

5.7 Actuation of Control Force

The formation control algorithm was implemented in a custom node called ’forma-

tion control’. This node read in the bearing, attitude and velocity measurements

obtained from other nodes and computed the desired control force. The equations

applied to compute the control force are are summarised in Figure 3.5 (velocity

damping) and Figure 3.8 (image space damping).

The PX4FMU supported offboard control signals for setting attitude or rate
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setpoints. The control force cannot be directly actuated by the quadrotor and

must be indirectly applied by manipulating the vehicle attitude. An advantage of

quadrotors is that when they are close to level the thrust is decoupled from pitch

and roll. With this assumption and assuming the height is essentially constant as

imposed by the height controller, the thrust force was approximated as FT = mg.
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Figure 5.9: Free body diagram showing how control forces are applied depending

on the yaw ψ, pitch θ and roll φ of the vehicle.

The free body diagram shown in Figure 5.9 indicates how directional forces are

applied based on the roll, pitch, yaw and thrust of the vehicle. The equations for

conversion from a control force vector to roll, pitch, yaw and thrust set points can

be derived geometrically. The control force was transformed so that it is defined by

the x and y axis of the body fixed frame based on the Vicon yaw measurement.

Fx = cos(θ)Fworld,x − sin(θ)Fworld,y (5.3a)

Fy = sin(θ)Fworld,x + cos(θ)Fworld,y (5.3b)

Then the required pitch and yaw is computed according to the relations

sin(θ) =
Fx
mg

(5.4)

sin(φ) =
Fy
mg

. (5.5)

For safety reasons, the maximum pitch and roll rate was limited to 10 degrees

to reduce the maximum acceleration and ensure markers were always in view of the

quadrotor. This method does not take into account under-actuation of the vehicle,

but for the purposes of validating the formation control algorithm, it is a reasonable

approximation. This simple method will need adaptation for an experiment where

height is not held constant.

43



Chapter 6

Experiments and Simulations

6.1 Testing Methodology

The purpose of a physical implementation of the algorithm was to give an insight in

to practical limitations such as sensor inaccuracy and imperfect actuation. Previous

chapters have discussed the developments of the sensor systems individually and in

controlled tests. An experiment to test all of the sensor systems during a flight test

is discussed below. Simulations of the algorithm aimed at analysing the behaviour

in scenarios not testable with only one quadrotor is described in Section 6.3. This

chapter concludes with a discussion on what additional tests are needed prior to

flying the quadrotor with the formation control algoithm.

6.2 Flight Test

The experimental configuration described in Section 5.2.3 was utilised in an ac-

tual flight test. Figure 6.1 shows the experiment environment. Data from the

camera, Vicon, the PX4FMU and processed measurements were logged during this

experiment. A video of the flight test which demonstrates the effectiveness of the

real time marker detection can be viewed at http://www.youtube.com/watch?v=

ISheEfqbyxc. Plots of the data obtained over the entire experiment are found in

Appendix A.

In a 50 second flight test, only one marker was misdetected for less than 0.1 sec-

onds which demonstrated the robustness of the computer vision algorithm. Markers

were correctly reported as not visible rather than erroneously being detected else-

where when viewed at extreme angles. Logging the video data reduced the marker

detection rate by 6Hz to an average of 49Hz compared with performance when video

data was not logged. This performance impact was relatively small which can be

attributed to using an SSD for data storage.

The time of arrival of Vicon measurements was extremely sporadic which was

the primary source of measurement error in this experiment. On one occasion, no

measurements arrived from Vicon for around two seconds. The accuracy of bearing
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Figure 6.1: Sensor test experiment environment.

measurements was negatively impacted as they were dependent on yaw measure-

ments from Vicon (see Section 5.4). It is suspected that the main cause of these

delays was occlusion of markers by the propellers and objects in the environment

rather than packet loss. Alternative positioning of Vicon markers should be inves-

tigated in the future to reduce the rate of occlusions.

Velocity measurements were also dependent on Vicon and the delay in measure-

ments was clearly observable. Fortunately, the data did not experience large spikes

and remained usable because of the modifications to the Vicon driver described in

Section 5.3.

The roll and pitch measurements obtained from Vicon were far too sporadic to

use for conversion of bearings to the Vicon reference frame. Roll and pitch mea-

surements from the PX4FMU were accurate and arrived robustly as was previously

demonstrated in Section 5.4. There was a bias of less than 1◦ in both measurements

which may have been correctable with a recalibration of the accelerometers. Using

these measurements when computing the transformation from the body fixed frame

to the Vicon reference frame was effective as demonstrated by the accuracy of the

bearing measurements.

Due to time constraints, the height and yaw controller was not tested and so

the quadrotor was not yet ready to be flown under control of the algorithm. The

following section simulates the formation control algorithm in a similar geometric

configuration to what was shown in Figure 6.1. More complex experimental config-

urations with multiple vehicles are also discussed.

6.3 Algorithm Simulations

A simulation environment for the formation control algorithm was developed in

MATLAB and the code is found in Appendix D. The simulation was not intended
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to model the dynamics of the quadrotor or performance of the sensors, but rather to

investigate the global stability and performance of the formation control algorithm.

Quadrotors were modelled as point masses which could fully actuate control forces

imposed by the formation control algorithm.

The simulation provided an environment to test the interaction between a large

number of vehicles which was not feasible to physically test. Appropriate gains for

the formation control algorithm were safely determined using the simulation and

variations to the algorithms were evaluated. A vehicle configuration was designed

where vehicles were highly displaced from their goal bearings. The vehicles were

initially arranged in a rectangle with no initial velocity. The range estimate at the

start of the experiment was assigned to the correct range. The goal bearings form a

right triangle with one vehicle sitting at the middle of the hypotenuse of the triangle.

Figure 6.2 shows the trajectory and bearing error over time in this configuration

using the velocity damping algorithm. Correct convergence to the desired formation

is demonstrated, confirming the validity of previous work by Stacey and Mahony

(2013). The bearing error converges to a minimum at an exponential rate with no

observable overshoot because of the velocity damping. Although the algorithm is

invariant to scale, expansion and contraction of the formation will eventually stop

due to the velocity damping.
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Figure 6.2: Velocity damping algorithm trajectories and bearing errors over time.

Figure 6.3 shows the same vehicle configuration with the image space damp-

ing algorithm applied. The gains were tuned for similar performance of bearing

error over time to the velocity damping algorithm. The algorithm successfully con-

verged to the goal formation which demonstrated that the algorithm performed to

expectations and was a suitable alternative to the velocity damping algorithm. The

formation expanded substantially leading to a large difference in the trajectory than
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Figure 6.3: Image space damping trajectories and bearing errors over time.

what observed with the velocity damping algorithm. The expansion of the formation

was uncontrolled without any velocity damping.

Stacey and Mahony (2013) suggest a vehicle topology which includes some range

sensors to control the scale of the formation. In a practical implementation, a low

accuracy position sensor could be used to estimate the growth rate of the formation

and control it. If ck was set too low in the image space damping algorithm the

algorithm appeared to expand indefinitely without convergence as the control force

became increasingly negligible. This issue was resolved by setting the gains to match

the expected scale of the formation.
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(a) Velocity damping algorithm.
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Figure 6.4: Simulated trajectories of the algorithms in the physical experiment

configuration.

Figure 6.4 shows a simulation of a suggested experimental configuration with

47



Chapter 6 Experiments and Simulations 6.4 Algorithm Implementation

both algorithms. Four vehicles start in a rectangle where one vehicle is able to

move and the other three are fixed in place. Using fixed vehicles breaks the scale

invariance of the formation. The goal bearings are defined so that the goal position

is (1,1) for the free vehicle. The algorithm gains were tuned to give appropriate

vehicle velocities and safe trajectories. The vehicle correctly converged to the goal

formation position in both algorithms. The performance was comparable, although,

the trajectories were slightly different because of the change in damping method.

A few extreme conditions were tested in simulation. If r̂ was initially set much

smaller than the true range, then the effective gains in the system became very

large and the system response was unpredictable. This behaviour is avoidable in

a practical implementation by setting the range estimate larger than the expected

initial range or by bounding the range estimate to sensible values, although breaks

the passivity of the system. In certain configurations where vehicles would move

close together, very large forces were observed. When this occurred, vehicles would

fly off in unpredictable directions at high velocities. This indicates the necessity of

a vehicle avoidance controller for this algorithm.

6.4 Algorithm Implementation

The quadrotor was not flown under the control of the formation control algorithm.

The remaining tests and developments that were required prior to performing this

experiment were to:

� Tune the height and yaw controllers and verify suitable performance.

� Verify that the control commands from the formation control algorithm were

being actuated in the correct directions by the PX4FMU.

� Investigate alternative positioning of Vicon markers to minimise occlusions.

� Implement observers for velocity and yaw to handle long communication dropouts

with Vicon.

The proposed experiment to verify the algorithm was fundamentally very simple

because it would be applied with only one quadrotor rather than a formation. Fly-

ing the quadrotor with the formation control algorithm would have provided a test

of the accuracy of the actuation of control forces. It would also have fully verified

that the formation control algorithm was feasible to implement on an aerial vehi-

cle. As detailed in this thesis, the performance of the sensor systems required for

the formation control algorithm could be effectively assessed by flying the vehicle

manually.
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Conclusions and Further Work

7.1 Conclusions

A high-end quadrotor was built based on a reference quadrotor design used at the

ANU and the flight controller was modified to support offboard control. A cus-

tom high performance vision system was designed and appended to the quadrotor

which utilised a custom omnidirectional lens with a better vertical field of view than

similarly priced commercial solutions. A computer vision algorithm was developed

which robustly detected vehicle markers at high speed and provided bearing mea-

surements with suitable accuracy. A driver for the Vicon motion capture system

was modified to give robust velocity measurements in the presence of dropped pack-

ets. A modification to the algorithm was proposed and tested in simulation which

eliminated the direct dependence on velocity measurements. A flight experiment on

the custom-built quadrotor demonstrated the suitability of all onboard sensor mea-

surements for use with the formation control algorithm. Further experimentation

is required to test proposed height and yaw controllers and to verify that control

forces are correctly actuated before the quadrotor can be flown under the control of

the algorithm.

7.2 Further Work

The sensor systems that were designed and tested on the custom-built quadrotor

worked effectively. The remaining steps to be completed before the formation control

algorithm can be used to control the quadrotor are discussed in Section 6.4. Once

these are completed and the formation control algorithm works on a single vehicle,

more quadrotors can be built which will allow a more comprehensive physical test

of the algorithm.

A long-term goal is to extend the implementation outside the laboraty environ-

ment and into the field. Moving outdoors will require removing all dependence on

Vicon, which means finding an alternative sensor to compute the range velocity ṙ.

The method of actuating control forces on the quadrotor was straightforward
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and utilised a simplified vehicle model which linked the actuation of control force to

the attitude of the vehicle. The effectiveness of this method will need to be tested in

the future. The actuation performance may be improved by designing the algorithm

for an under-actuated model a quadrotor rather than a point mass model.

Several features may need to be added to the formation control algorithm for it

to be competitive with other algorithms. These include object and vehicle avoid-

ance, teleoperation and trajectory navigation. The effect of sensor measurement

delays and loss of vision of other vehicles also needs to be considered. As previously

mentioned, observers could be used to improve the robustness of measurements that

arrive unpredictably, such as those from Vicon. Further analysis of the risk of po-

tential stability and performance issues with the algorithm that have been brought

up in this thesiere needs to be fs may also be warranted.

ANU is currently investigating high performance motor control and acrobatics.

The current vision system weighs too much to be used on a vehicle for these appli-

cations. Also, the processing board used for the vision system in this project may

not have enough power to use the camera at a high frame rate with more complex

computer vision algorithms. Processing boards have been shrinking and becoming

more powerful since this projects inception in early 2013 and may soon be able to

support this kind of research.
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Flight Test Data
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Figure A.1: Bearing azimuth measurements (Vicon reference black).
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Figure A.2: Bearing elevation measurements (Vicon reference black).
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Figure A.3: Vicon yaw measurements.
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Figure A.4: PX4FMU and Vicon roll measurements.
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Figure A.5: PX4FMU and Vicon pitch measurements.
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Figure A.6: Velocity measurements from Vicon
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Appendix B

ROS Code

B.1 mv bluefox driver Node Modifications

This section outlines the modifications to the ’mv bluefox driver’ package by Carlos

Jaramillo which exposed control of gain, exposure time, pixel clock and region of

interest.

Listing B.1: Modifications to /mv bluefox driver/include/camera.h.

1 class Camera {
2 <unmodified intermediate code not displayed for brevity>

3 private:

4 int startX , startY ,gain dB , expose us , pixelClock KHz ;

5 <unmodified intermediate code not displayed for brevity>

Listing B.2: Modifications to /mv bluefox driver/src/camera.cpp.

1 Camera::Camera(ros::NodeHandle comm nh, ros::NodeHandle param nh) :

2 node( comm nh), pnode( param nh) {
3 <unmodified intermediate code not displayed for brevity>

4 pnode.param(”startX”, startX , 0);

5 pnode.param(”startY”, startY , 0);

6 pnode.param(”gain dB”, gain dB , 0);

7 pnode.param(”expose us”, expose us , 20000);

8 pnode.param(”pixelClock KHz”, pixelClock KHz , 27000);

9 <unmodified intermediate code not displayed for brevity>

10

11 bool Camera::initSingleMVDevice() {
12 <unmodified intermediate code not displayed for brevity>

13 settings.cameraSetting.gain dB.write(gain dB );

14 settings.cameraSetting.expose us.write(expose us );

15 settings.cameraSetting.pixelClock KHz.write(mvIMPACT::acquire::TCameraPixelClock(

pixelClock KHz ));
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16 settings.cameraSetting.aoiStartX.write( startX );

17 settings.cameraSetting.aoiStartY.write( startY );

18 <unmodified intermediate code not displayed for brevity>

B.2 marker detector Node

This section covers the source code and custom ROS message types for the marker detector

node developed for detection of coloured markers.

Listing B.3: /formation control/src/markerDetector.cpp.

1 /* This node detects vehicle markers and outputs their bearings */

2 /* General includes + ROS messages */

3 #include <ros/ros.h>

4 #include <math.h>

5 #include <limits>

6 #include <sstream>

7 #include ”Eigen/Core” // Eigen vector c++ library

8 #include ”formation control/bearing.h”

9 /* Image retrieval and image processing */

10 #include <image transport/image transport.h>

11 #include <cv bridge/cv bridge.h>

12 #include <sensor msgs/image encodings.h>

13 #include <opencv2/imgproc/imgproc.hpp>

14 #include <opencv2/highgui/highgui.hpp>

15 /* Camera calibration */

16 #include ”undistortFunctions/ocam functions.cpp” // OCamCalib

17 /* Parameters */

18 #define calibLoc ”/home/lachy/catkin ws/src/formation control/cfg/calib results.txt”

19 #define output false

20 #define display false

21 #define publish true

22 #define minBounding 30

23 #define minDist 96

24 #define maxDist 230

25

26 namespace enc = sensor msgs::image encodings;

27 using namespace cv;

28

29 class ImageConverter {

58



Appendix B ROS Code B.2 marker detector Node

30 public:

31 /* ROS node + subscribers/publishers */

32 ros::NodeHandle nh ;

33 image transport::ImageTransport it ;

34 image transport::Subscriber image sub ;

35 image transport::Publisher image pub ;

36 ros::Publisher pub bearings;

37 formation control::bearing msg;

38 /* Marker detection variables and projection model parameters */

39 XmlRpc::XmlRpcValue markers ;

40 Eigen::Matrix<int, 6, Eigen::Dynamic> mrk col;

41 Eigen::Matrix<double, 1, Eigen::Dynamic> x,y, sz;

42 int numMarkers;

43 struct ocam model cam;

44 Mat ROImask;

45 public:

46 ˜ImageConverter() {}
47 ImageConverter() : it (nh ) {
48 /* ROS node + subscribers/publishers initialisation */

49 if (publish ) image pub = it .advertise(”out”, 1);

50 image sub = it .subscribe(”/mv bluefox camera node/image raw”, 1, &ImageConverter

::imageCb, this); // Find names with rostopic list

51 pub bearings = nh .advertise<formation control::bearing>(”bearings”, 1000);

52 nh .param(”markers thresholds”, markers , markers );

53 /* Marker detection variables */

54 get ocam model(&cam, calibLoc);

55 numMarkers=markers .size();

56 mrk col.resize(6,numMarkers);

57 msg.bearing.resize(numMarkers);

58 x.resize(numMarkers);

59 y.resize(numMarkers);

60 sz.resize(numMarkers);

61 for(int i=0; i < numMarkers; i++) {
62 x(i)=NAN;

63 y(i)=NAN; }
64 /* Evaluate marker thresholds from config.yaml */

65 for(int i=0; i < numMarkers; i++) {
66 std::stringstream stream(markers [i]);

67 int j=0;

68 int n;

69 while(stream >> n) {
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70 mrk col(j,i)=n;

71 j+=1; } }
72 /* Define a mask for only searching on the the mirror */

73 ROImask.create(480,480, CV 8U); // Set to image res

74 ROImask.setTo(Scalar(0,0,0));

75 circle(ROImask,Point2f(cam.yc, cam.xc),maxDist ,Scalar(255),−1,8,0);

76 circle(ROImask,Point2f(cam.yc, cam.xc),minDist ,Scalar(0),−1,8,0); }
77

78 /* Image callback */

79 void imageCb(const sensor msgs::ImageConstPtr& msg) {
80 cv bridge::CvImagePtr cv ptr;

81 try { cv ptr = cv bridge::toCvCopy(msg); }
82 catch (cv bridge::Exception& e) {
83 ROS ERROR(”cv bridge exception: %s”, e.what());

84 return; }
85 markerDetector(cv ptr); }
86

87 /* Detects markers, publishes bearings */

88 void markerDetector(cv bridge::CvImagePtr cv ptr) {
89 Mat imgHSV, imgMask;

90 cv ptr−>image.copyTo(imgMask,ROImask); // Mask all but the mirror

91 cvtColor(imgMask, imgHSV, CV RGB2HSV); //Convert RGB to HSV

92 for (int i=0; i<numMarkers; i++) {
93 msg.bearing[i].x=NAN;

94 msg.bearing[i].y=NAN;

95 msg.bearing[i].z=NAN;

96 /* Update ROI */

97 Mat imgROI;

98 int x off,y off, x sz, y sz;

99 if (isnan(x(i))) {
100 x off=0;

101 y off=0;

102 x sz=imgHSV.cols;

103 y sz=imgHSV.rows;

104 imgROI=imgHSV;

105 } else {
106 x off=std::min(imgHSV.cols−2,(std::max(0,(int)(x(i)−sz(i)/2))));

107 y off=std::min(imgHSV.rows−2,(std::max(0,(int)(y(i)−sz(i)/2))));

108 x sz=std::min((int)sz(i),imgHSV.cols−x off−1);

109 y sz=std::min((int)sz(i),imgHSV.rows−y off−1);

110 imgROI=imgHSV(Rect(x off,y off,x sz,y sz)); }
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111 /* Threshold images based on colour in HSV colour space */

112 Mat binaryThreshold(imgROI.size(), CV 8U);

113 if (mrk col(0,i)>mrk col(1,i)) { // Special case for colours that wrap around 0

hue (red)

114 Mat binaryThreshold2(imgROI.size(), CV 8U);

115 inRange(imgROI, Scalar(0,mrk col(1,i),mrk col(4,i)), Scalar(mrk col(1,i),

mrk col(3,i),mrk col(5,i)), binaryThreshold);

116 inRange(imgROI, Scalar(mrk col(0,i),mrk col(2,i),mrk col(4,i)), Scalar(255,

mrk col(3,i),mrk col(5,i)), binaryThreshold2);

117 binaryThreshold|=binaryThreshold2;

118 } else {
119 inRange(imgROI, Scalar(mrk col(0,i),mrk col(2,i),mrk col(4,i)), Scalar(

mrk col(1,i),mrk col(3,i),mrk col(5,i)), binaryThreshold); }
120 /* Find largest blob in image and compute centroid */

121 vector<vector<Point> > contours;

122 vector<Vec4i> hierarchy;

123 findContours( binaryThreshold, contours, hierarchy, CV RETR TREE,

CV CHAIN APPROX SIMPLE, Point(0, 0));

124 if (contours.size()==0) { x(i)=NAN; continue; }
125 double maxArea=0;

126 int maxC=0;

127 for( int c = 0; c < contours.size(); c++ ) {
128 double Area=contourArea(contours[c]);

129 if (Area>maxArea) {
130 maxArea=Area;

131 maxC=c; } }
132 if (maxArea==0) { x(i)=NAN; continue; }
133 Moments mu = moments(contours[maxC], false);

134 x(i)=mu.m10/mu.m00+x off;

135 y(i)=mu.m01/mu.m00+y off;

136 /* Compute area for next ROI based on size of marker */

137 Point2f center;

138 float radius;

139 minEnclosingCircle(contours[maxC],center,radius);

140 sz[i]=radius+minBounding ;

141 /* Compute bearing */

142 double point2D[2] = {y(i),x(i)};
143 double point3D[3];

144 cam2world(point3D, point2D, &cam);

145 msg.bearing[i].x=point3D[0];

146 msg.bearing[i].y=point3D[1];
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147 msg.bearing[i].z=point3D[2];

148 /* Draw contours, centroids and labels of detected markers */

149 if(publish ) {
150 char buffer[3];

151 sprintf(buffer,”%d”,i);

152 circle(cv ptr−>image, Point2f(x(i), y(i)), 2, Scalar( 0, 0, 0 ), −1, 8, 0 );

153 rectangle(cv ptr−>image, Point2f(x off,y off),Point2f(x off+x sz,y off+

y sz),Scalar( 255, 0, 0 ));

154 putText(cv ptr−>image,buffer, Point2f( x(i), y(i)),

FONT HERSHEY SIMPLEX, 0.5, Scalar(0,255,0),1.5); }
155 if(output ) ROS INFO(”Marker %d, IMG (%.1f,%.1f) −> CAM (%.3f,%.3f

,%.3f), %.0f”, i, x(i), y(i), msg.bearing[i].x, msg.bearing[i].y, msg.bearing[i].

z, acos(msg.bearing[i].z)*180/3.141−90);

156 circle(imgHSV,Point2f(x(i), y(i)),20,Scalar(0),−1,8,0); } // Mask region after

something is detected there (not ideal)

157 if(display ) {
158 Mat imgRGB;

159 cvtColor(cv ptr−>image, imgRGB, CV RGB2BGR);

160 imshow(”Detected image”, imgRGB);

161 waitKey(1); }
162 if (publish ) {
163 //circle( cv ptr−>image, Point2f(cam.yc, cam.xc), minDist , Scalar( 0, 0, 255

), 1, 8, 0 );

164 circle( cv ptr−>image, Point2f(cam.yc, cam.xc), maxDist , Scalar( 0, 0, 255 ),

1, 8, 0 );

165 image pub .publish(cv ptr−>toImageMsg()); }
166 /* Publish bearings */

167 pub bearings.publish(msg); }
168 };
169

170 int main(int argc, char** argv) {
171 ros::init(argc, argv, ”marker detector”);

172 ImageConverter ic;

173 ros::spin();

174 return 0;

175 }

Listing B.4: /formation control/msg/bearing.msg.

1 # Contains an array of all of the detected bearings of markers

2 geometry msgs/Vector3[] bearing
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Listing B.5: /formation control/cfg/config.yaml.

1 # Defines thresholds for markers in the HSV colour space

2 # Order is Hmin Hmax Smin Smax Vmin Vmax

3 markers thresholds:

4 − 107 125 100 220 160 256

5 − 70 93 70 220 100 256

6 − 5 19 150 230 175 256

7 # Goal bearings (on unit sphere)

8 marker goals:

9 − 1.588 −0.613 0.700

10 − 1.239 0.392 0.430

11 − −0.075 −1.216 0.559

12 # Location of fixed markers positions

13 use fixed markers: true

14 marker fixed pos:

15 − 1.588 −0.613 0.650

16 − 1.189 0.342 0.430

17 − −0.075 −1.196 0.459

B.3 formation control Node

This section covers the source code and custom ROS message types for the forma-

tion control node developed for applying the formation control algorithm. This node

also uses config.yaml as was just listed.

Listing B.6: /formation control/src/formationControl.src.

1 /* This node implements the formation control algorithm outputting a desired control force

2 * This node takes in sensor measurements from the camera, Vicon and the IMU.

3 * config.yaml defines many options such as vehicle marker colours and desired bearings. */

4

5 /* General includes + ROS messages + MAVLINK messages */

6 #include ”ros/ros.h”

7 #include <fstream>

8 #include <iostream>

9 #include <math.h>

10 #include <limits>

11 #include ”Eigen/Core” // Eigen vector c++ library

12 #include ”formation control/bearing.h”

13 #include ”formation control/state.h”
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14 #include ”geometry msgs/Vector3.h”

15 #include ”std msgs/String.h”

16 //#include ”mavlink.h”

17 //#include ”mavlink ros/Mavlink.h”

18 #include <std msgs/UInt16MultiArray.h> // Output to mavlink ros

19 /* Vicon and PX4 measurements/transforms */

20 #include ”geometry msgs/TransformStamped.h”

21 #include <tf/transform datatypes.h>

22 #include <tf/transform listener.h>

23 #include ”sensor msgs/Imu.h”

24 /* Display goal bearings and current bearings */

25 #include <image transport/image transport.h>

26 #include <cv bridge/cv bridge.h>

27 #include <sensor msgs/image encodings.h>

28 #include <opencv2/imgproc/imgproc.hpp>

29 #include <opencv2/highgui/highgui.hpp>

30 /* Standard includes */

31 #include <iostream>

32 #include <cstdlib>

33 #include <unistd.h>

34 #include <cmath>

35 #include <string.h>

36 #include <inttypes.h>

37 #include <fstream>

38 /* Latency Benchmarking */

39 #include <sys/time.h>

40 #include <time.h>

41 /* Parameters and numerical constants */

42 #define pi 3.1415926

43 #define g 9.81

44 #define viconTopic ”vicon/PX4 FORMATION/PX4 FORMATION”

45 #define imuTopic ”/fcu/imu”

46 #define bearingTopic ”bearings”

47 #define modeTopic ”/mode”

48 #define INT16 MAX 0x7fff

49 #define INT16 MIN (−INT16 MAX − 1)

50 #define UINT16 MAX 0xffff

51 #define vehicleMass 1.3

52 #define goalHeight 1

53 #define hoverThrust 0.2

54 #define Kp 0.0
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55 #define Ki 0.0

56 #define Kd 0.0

57 #define c 3.0

58 #define c obs k 1.0

59 #define default range 1.5

60 #define vel obs G 0.25

61 #define D 3

62 #define centreX 236.917082

63 #define centreY 238.194657

64 #define debug false

65 #define debugIMU false

66 #define debugVicon false

67 #define attHybrid true

68

69 // Logging − Saves to ˜/.ros

70 #define logVicon false

71 #define logViconLoc ”logVicon.txt”

72 #define logRPY false

73 #define logRPYLoc ”logRPY.txt”

74 #define logBearing false

75 #define logBearingLoc ”logBearing.txt”

76

77 #define SYSID 1

78 #define COMPID 0

79 #define MAVLINK OFFBOARD CONTROL MODE NONE 0

80 #define MAVLINK OFFBOARD CONTROL MODE RATES 1

81 #define MAVLINK OFFBOARD CONTROL MODE ATTITUDE 2

82 #define MAVLINK OFFBOARD CONTROL MODE VELOCITY 3

83 #define MAVLINK OFFBOARD CONTROL MODE POSITION 4

84 #define MAVLINK OFFBOARD CONTROL FLAG ARMED 0x10

85 #define MAV MODE PREFLIGHT 0

86 #define MAV MODE STABILIZE ARMED 208

87 #define MAV MODE MANUAL ARMED 192

88

89 namespace enc = sensor msgs::image encodings;

90 using namespace std;

91

92 geometry msgs::Vector3 eigenToVector3(Eigen::Matrix<double, 3, 1> eig) {
93 geometry msgs::Vector3 vec;

94 vec.x=eig(0);

95 vec.y=eig(1);
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96 vec.z=eig(2);

97 return vec;

98 }
99

100 Eigen::Matrix<double, 3, 1> Vector3ToEigen(geometry msgs::Vector3 vec) {
101 Eigen::Matrix<double, 3, 1> eig;

102 eig(0)=vec.x;

103 eig(1)=vec.y;

104 eig(2)=vec.z;

105 return eig;

106 }
107

108 class formationControl {
109 public:

110 /* ROS node + subscribers/publishers + messages */

111 ros::NodeHandle nh ;

112 ros::Subscriber subBearing, subIMU, subVicon, subMode;

113 ros::Publisher pub force, pub stateVicon, pub stateIMU, pub mavlinkMSG,

pub mavlinkMSGv2;

114 geometry msgs::Vector3 msgForce;

115 formation control::state msgViconState, msgIMUState;

116 /* Formation control variables */

117 double dt; // Time between bearing measurements

118 int N; // Number of quads

119 XmlRpc::XmlRpcValue mrk goal ,marker fixed pos ;

120 bool use fixed markers ;

121 Eigen::Matrix<double, 3, Eigen::Dynamic> e, s, sTilde, sGoal, sPrev, sTildeDot, epsilon

, sGoal img, sCam, s img, p fixed;

122 Eigen::Matrix<double, 1, Eigen::Dynamic> r, rHat, rDot;

123 Eigen::Matrix<double, 3, 1> vel obs;

124 Eigen::Matrix<double, 3, 1> epsilon total, epsilon total bff, epsilon total img;

125 uint16 t rset,pset,yset,tset; // The implemented set points

126 /* State information (velocity, roll/pitch/yaw), rotation matrices */

127 string mode ;

128 Eigen::Matrix<double, 3, 3> R vicon2bff, R IMU2bff, R bff2cam, R cam2img;

129 tf::Matrix3x3 R v;

130 Eigen::Matrix<double, 3, 1> p, pDot;

131 bool skipNext;

132 int frame number,frame numberPrev;

133 Eigen::Matrix<double, 1, 2> ePID;

134 double ePIDDot;
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135 double ePIDInt;

136 /* Visual debugging */

137 image transport::ImageTransport it ;

138 image transport::Subscriber image sub ;

139 /* Safety/logging/performance checking */

140 ros::Time viconStamp, px4Stamp, bearingStamp;

141 ros::Duration blindTime; // If PX4 measurements or Vicon measurements not received

in this time, power down

142 ofstream logFileVicon,logFileRPY,logFileBearing;

143 int fpsCount;

144 ros::Time fpsTime;

145 int counter;

146 ros::Timer timer;

147

148 public:

149 formationControl() : it (nh ) {
150 /* ROS node + subscribers/publishers initialisation + others */

151 counter=0;

152 mode = ”disarmed”;

153 subMode = nh .subscribe(modeTopic, 1000, &formationControl::modeCallback,this)

;

154 subBearing = nh .subscribe(bearingTopic, 1000, &formationControl::

bearingCallback,this);

155 subIMU = nh .subscribe(imuTopic, 1000, &formationControl::IMUCallback,this);

156 subVicon=nh .subscribe(viconTopic,1000, &formationControl::ViconCallback,this);

157 //pub mavlinkMSG = nh .advertise<mavlink ros::Mavlink>(”/mavlink/to”, 1000);

158 pub mavlinkMSGv2 = nh .advertise<std msgs::UInt16MultiArray>(”/mavlink/

offboard”,1000);

159 pub force = nh .advertise<geometry msgs::Vector3>(”force xyz”, 1000);

160 image sub = it .subscribe(”/out”, 1, &formationControl::imageCb, this);

161 pub stateVicon = nh .advertise<formation control::state>(”state vicon”, 1000);

162 pub stateIMU = nh .advertise<formation control::state>(”state IMU”, 1000);

163 timer = nh .createTimer(ros::Duration(0.02), &formationControl::calculateForce,

this); // Send control commands at 50Hz

164 if (logVicon) {
165 logFileVicon.open(logViconLoc);

166 logFileVicon << ”#time” << ”\t” << ”vx” << ”\t” << ”vx raw” << ”\t”

<< ”vy” << ”\t” << ”vy raw” << ”\t” << ”vz” << ”\t” << ”

vz raw” ”\t” << ”x” << ”\t” << ”y” << ”\t” << ”z” << endl;

167 }
168 if (logRPY) {
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169 logFileRPY.open(logRPYLoc);

170 logFileRPY << ”#time” << ”\t” << ”vR” << ”\t” << ”vP” << ”\t” <<

”vY” << ”\t” << ”pR” << ”\t” << ”pP” << ”\t” << ”pY” <<

endl;

171 }
172 if (logBearing) logFileBearing.open(logBearingLoc);

173 blindTime=ros::Duration(1.0);

174 fpsTime=ros::Time::now();

175 /* Formation control variables */

176 nh .param(”marker goals”, mrk goal , mrk goal );

177 nh .param(”marker fixed pos”, marker fixed pos , marker fixed pos );

178 nh .param(”use fixed markers”, use fixed markers , false);

179 N=mrk goal .size(); // Number of quads

180 dt=1;

181 p fixed.resize(3,N);

182 e.resize(3,N);

183 s.resize(3,N);

184 sCam.resize(3,N);

185 s img.resize(3,N);

186 sGoal img.resize(3,N);

187 sGoal.resize(3,N);

188 sTilde.resize(3,N);

189 sPrev.resize(3,N);

190 sPrev=Eigen::MatrixXf::Constant(3,N,NAN).cast<double>(); // Eigen is

AWQUAD

191 sTildeDot.resize(3,N);

192 r.resize(1,N);

193 rHat.resize(1,N);

194 rDot.resize(1,N);

195 epsilon.resize(3,N);

196 /* Evaluate goal bearings from config.yaml */

197 for (int i=0; i < N; i++) {
198 std::stringstream stream(mrk goal [i]);

199 int j=0;

200 double n;

201 while(stream >> n) {
202 sGoal(j,i)=n;

203 j+=1; } }
204 /* Evaluate locations of fixed markers from config.yaml */

205 if (use fixed markers ) {
206 for (int i=0; i < N; i++) {
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207 std::stringstream stream(marker fixed pos [i]);

208 int j=0;

209 double n;

210 while(stream >> n) {
211 p fixed(j,i)=n;

212 j+=1; } } }
213 /* Define fixed rotation matrices */

214 R bff2cam << 0, −1, 0, 1, 0, 0, 0, 0, 1;

215 R cam2img << 0, 1, 0, 1, 0, 0, 0, 0, −1;

216

217 }
218 ˜formationControl() {}
219

220 void modeCallback(std msgs::String msg) {
221 mode =msg.data;

222 }
223

224 /* Gets rotation matrix/rpy from IMU */

225 void IMUCallback(sensor msgs::Imu msg imu) {
226 double rollIMU, pitchIMU, yawIMU;

227 tf::Quaternion qIMU(msg imu.orientation.x, −msg imu.orientation.y, −msg imu.

orientation.z, msg imu.orientation.w);

228 tf::Matrix3x3 R IMU(qIMU);

229 R IMU.getEulerYPR(yawIMU, pitchIMU, rollIMU);

230 R IMU2bff << R IMU[0][0], R IMU[1][0], R IMU[2][0], R IMU[0][1], R IMU[1][1],

R IMU[2][1], R IMU[0][2], R IMU[1][2], R IMU[2][2];

231 if (attHybrid) R v.setEulerYPR(msgViconState.yaw*pi/180.0,−pitchIMU,−rollIMU);

232 else R v.setEulerYPR(msgViconState.yaw*pi/180.0,msgViconState.pitch*pi/180.0,

msgViconState.roll*pi/180.0);

233 R vicon2bff << R v[0][0], R v[1][0], R v[2][0], R v[0][1], R v[1][1], R v[2][1], R v

[0][2], R v[1][2], R v[2][2];

234 msgIMUState.roll=rollIMU*180.0/pi;

235 msgIMUState.pitch=pitchIMU*180.0/pi;

236 msgIMUState.yaw=yawIMU*180.0/pi;

237 pub stateIMU.publish(msgIMUState);

238 if (debugIMU) ROS INFO(”IMU r,p,y=%2.2f,%2.2f,%2.2f”,rollIMU*180/pi,

pitchIMU*180/pi, yawIMU*180/pi);

239 px4Stamp=ros::Time::now();

240 }
241

242 /* Gets rotation matrix/rpy and position/velocity from Vicon */
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243 void ViconCallback(const geometry msgs::TransformStamped::ConstPtr& msg) {
244 ros::Time viconStampPrev=viconStamp;

245 viconStamp=ros::Time::now();

246 /* Compute position and rotation matrix */

247 Eigen::Matrix<double, 3, 1> pPrev=p;

248 Eigen::Matrix<double, 3, 1> rpy;

249 p << −msg−>transform.translation.y, −msg−>transform.translation.x, msg−>
transform.translation.z+0.15; // +˜0.2 for cam origin

250 tf::Quaternion q(−msg−>transform.rotation.y, −msg−>transform.rotation.x, −
msg−>transform.rotation.z, msg−>transform.rotation.w);

251 double roll, pitch, yaw;

252 R v.setRotation(q);

253 R v.getEulerYPR(yaw, pitch, roll);

254 rpy << roll, pitch, yaw;

255 if (attHybrid) R v.setEulerYPR(yaw,−msgIMUState.pitch*pi/180.0,−msgIMUState.

roll*pi/180.0);

256 R vicon2bff << R v[0][0], R v[1][0], R v[2][0], R v[0][1], R v[1][1], R v[2][1], R v

[0][2], R v[1][2], R v[2][2];

257 /* Compute the change in time between received measurements */

258 int frameDiff=msg−>header.stamp.toSec() − frame numberPrev;

259 double dtt=0.005*frameDiff; // 200Hz, due to latency etc the timestamps cannot

be used

260 frame numberPrev=msg−>header.stamp.toSec();

261 if (dtt==(0.005*frame numberPrev) || dtt<0) return; // Startup condition

262 Eigen::Matrix<double, 3, 1> pDot raw=(p−pPrev)/dtt;

263 pDot+=vel obs G*(pDot raw−pDot);

264 msgViconState.roll=rpy(0)*180/pi;

265 msgViconState.pitch=rpy(1)*180/pi;

266 msgViconState.yaw=rpy(2)*180/pi;

267 msgViconState.pos=eigenToVector3(p);

268 msgViconState.vel=eigenToVector3(pDot);

269 msgViconState.vel raw=eigenToVector3(pDot raw);

270 pub stateVicon.publish(msgViconState);

271 if (logVicon) logFileVicon << ros::Time::now() << ”\t” << frame numberPrev

<< ”\t” << pDot(0) << ”\t” << pDot raw(0) << ”\t” << pDot(1) << ”

\t” << pDot raw(1) << ”\t” << pDot(2) << ”\t” << pDot raw(2) << ”\
t” << p(0) << ”\t” << p(1) << ”\t” << p(2) << endl;

272 if (debugVicon) {
273 ROS INFO(”VICON Roll:%.2f\tPitch:%.2f\tYaw:%.2f”,rpy(0)*180/pi,rpy(1)

*180/pi,rpy(2)*180/pi);

274 ROS INFO(”VICON x:%.2f\ty:%.2f\tz:%.2f”,p(0),p(1),p(2));

70



Appendix B ROS Code B.3 formation control Node

275 ROS INFO(”VICON vx:%.2f\tvy:%.2f\tvz:%.2f”,pDot(0),pDot(1),pDot(2));

276 }
277 }
278

279 /* Converts bearing measurements into a force */

280 void bearingCallback(const formation control::bearing &s xyz) {
281 dt=(ros::Time::now()−bearingStamp).toSec();

282 bearingStamp=ros::Time::now();

283 if (fpsCount++%100==0) {
284 ROS INFO(”Marker detection at %2fhz”,100/(ros::Time::now()−fpsTime).

toSec());

285 fpsTime=ros::Time::now();

286 }
287 /* Update range velocity measurements */

288 Eigen::Matrix<double, 3, 1> p = Vector3ToEigen(msgViconState.pos);

289 for (int k=0; k<N; k++) {
290 double rPrev=r(k);

291 r(k)=(p−p fixed.col(k)).transpose()*(p−p fixed.col(k));

292 rDot(k)=(r(k)−rPrev)/dt;

293 }
294 /* Algorithm Implementation (old algorithm, but damping not applied) */

295 for (int i=0; i<N; i++) sCam.col(i) = Vector3ToEigen(s xyz.bearing[i]).transpose()

;

296 sPrev=s;

297 s=R vicon2bff.transpose()*R bff2cam.transpose()*sCam;

298 sTildeDot=(s−sPrev)/dt;

299 sTilde=s−sGoal;

300 e=c*sTilde;

301 for (int k=0; k<N; k++) {
302 /* Handle missing markers */

303 if (isnan(sTildeDot(0,k))) {
304 e.col(k)=Eigen::MatrixXf::Zero(3,1).cast<double>();

305 s.col(k)=Eigen::MatrixXf::Zero(3,1).cast<double>();

306 sTilde.col(k)=Eigen::MatrixXf::Zero(3,1).cast<double>();

307 sTildeDot.col(k)=Eigen::MatrixXf::Zero(3,1).cast<double>();

308 rHat(k)=default range; }
309 /* Update range estimate (keep it positive just in case) */

310 rHat(k)+=(rDot(k)−((e.col(k).dot(sTildeDot.col(k)))/(c obs k*rHat(k))))*dt;

311 if (rHat(k)<0.1) rHat(k)=0.1;

312 /* Get control force from vehicle link */
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313 epsilon.col(k)=(1/rHat(k))*(Eigen::MatrixXf::Identity(3,3).cast<double>()−s.

col(k)*s.col(k).transpose())*e.col(k);

314 }
315 /* Sum forces, convert into bff, publish and then implement the force */

316 epsilon total=epsilon.rowwise().sum();

317 Eigen::Matrix<double, 3, 1> pDot = Vector3ToEigen(msgViconState.vel); //

Damping not tested

318 epsilon total bff=R vicon2bff*epsilon total−R vicon2bff*D*pDot;

319 msgForce=eigenToVector3(epsilon total bff);

320 pub force.publish(msgForce);

321 if(debug) ROS INFO(”Output control force (BFF) = (%.3f,%.3f,%.3f)”, msgForce.

x, msgForce.y, msgForce.z);

322 /* Log Azimuth/Bearing data */

323 if(logBearing) {
324 logFileBearing << ros::Time::now() << ”\t”;

325 for (int i=0; i<N; i++) {
326 Eigen::Matrix<double, 3, 1> qi = p fixed.col(i)−p;

327 Eigen::Matrix<double, 3, 1> si = qi/sqrt(qi.transpose()*qi);

328 float viconAzimuth = atan2(si(1),si(0))*180/pi;

329 float viconElevation = asin(si(2))*180/pi;

330 float bearingAzimuth = atan2(s(1,i),s(0,i))*180/pi;

331 float bearingElevation = asin(s(2,i))*180/pi;

332 if(isnan(s xyz.bearing[i].x)) logFileBearing << viconAzimuth << ”\t” <<

”NaN” << ”\t” << viconElevation << ”\t” << ”NaN” << ”\t”;

333 else logFileBearing << viconAzimuth << ”\t” << bearingAzimuth << ”\
t” << viconElevation << ”\t” << bearingElevation << ”\t”;

334 }
335 logFileBearing << endl;

336 }
337 }
338

339 /* Calculate force */

340 void calculateForce(const ros::TimerEvent&) {
341 //https://pixhawk.ethz.ch/mavlink/#

SET QUAD SWARM ROLL PITCH YAW THRUST

342 rset=INT16 MAX*atan(msgForce.x/(vehicleMass*g))/pi; //+−
343 pset=INT16 MAX*−atan(msgForce.y/(vehicleMass*g))/pi; //+−
344 /* Limit roll and pitch angles to 10 degrees */

345 if (((float)rset/INT16 MAX*180)>10.0) rset=INT16 MAX*10/180;

346 if (((float)rset/INT16 MAX*180)<−10.0) rset=−INT16 MAX*10/180;

347 if (((float)pset/INT16 MAX*180)>10.0) pset=INT16 MAX*10/180;
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348 if (((float)pset/INT16 MAX*180)<−10.0) pset=−INT16 MAX*10/180;

349 /* Just keep a steady yaw (unreliable) */

350 //yset=INT16 MAX * 0.00f;

351 /* Yaw controller (needs checking) */

352 yset=INT16 MAX*((msgIMUState.yaw+0.1*msgViconState.yaw)/180);

353 /* Height controller (needs checking) */

354 if (mode ==”height”) {
355 rset=INT16 MAX*0.0;

356 pset=INT16 MAX*0.0;

357 }
358 ePID(0)=ePID(1);

359 ePID(1)=goalHeight−msgViconState.pos.z;

360 //ePIDInt=ePIDInt+((ePID(0)+ePID(1))/2)*dt;

361 ePIDDot=(ePID(1)−ePID(0))/dt;

362 double thrust=Kp*ePID(1)+Kd*ePIDDot+hoverThrust;//+Ki*ePIDInt;

363 if (thrust<0) { tset = 0; }
364 else if (thrust>1) { tset = UINT16 MAX; }
365 else { tset=UINT16 MAX*thrust; }
366 /* Safety check */

367 ros::Time now = ros::Time::now();

368 if ((now−viconStamp)>ros::Duration(2.0) || (now−px4Stamp)>ros::Duration(2.0))

{
369 tset=UINT16 MAX * 0.0f;

370 if (debug) ROS WARN(”No vicon or px4 messages for 2.0s, thrust zero”); }
371 else if ((now−viconStamp)>ros::Duration(0.5) || (now−px4Stamp)>ros::Duration(0.5))

{
372 tset=UINT16 MAX * 0.2f;

373 if (debug) ROS WARN(”No vicon or px4 messages for 0.5s, thrusting down”);

}
374 /* Implement the force */

375 implementForce();

376 }
377

378 /* Implement the control force, with independent height controller */

379 void implementForce() {
380 /* Send command to customised mavlink ros node */

381 std msgs::UInt16MultiArray msg;

382 msg.data.resize(4);

383 msg.data[0]=rset;

384 msg.data[1]=pset;

385 msg.data[2]=yset;
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386 if (mode ==”formation”) msg.data[3]=tset;

387 else msg.data[3]=UINT16 MAX*0.01f;

388 if (mode !=”stop”) pub mavlinkMSGv2.publish(msg);

389 /* Log rpy/setpoint */

390 if (logRPY) logFileRPY << ros::Time::now() << ”\t” << msgViconState.roll <<

”\t” << msgViconState.pitch << ”\t” << msgViconState.yaw << ”\t” <<

msgIMUState.roll << ”\t” << msgIMUState.pitch << ”\t” <<

msgIMUState.yaw << endl;

391 /* Mavlink packet just seems incorrect, similar code seems to work elsewhere? who

knows */

392 /*

393 mavlink message t msg control;

394 mavlink set quad swarm roll pitch yaw thrust t sp;

395 sp.group = 0;

396 sp.mode = MAVLINK OFFBOARD CONTROL MODE ATTITUDE;

397 sp.roll[0] = INT16 MAX * 0.00f;

398 sp.pitch[0] = INT16 MAX * 0.00f;

399 sp.yaw[0] = INT16 MAX * 0.00f;

400 sp.thrust[0] = UINT16 MAX*0.01f;

401 mavlink msg set quad swarm roll pitch yaw thrust encode(200, 0, &msg control, &

sp); // This line fails to give correct MAVLINK message

402 mavlink ros::Mavlink rosmavlink msg;

403 rosmavlink msg.len = msg control.len;

404 rosmavlink msg.seq = msg control.seq;

405 rosmavlink msg.sysid = msg control.sysid;

406 rosmavlink msg.compid = msg control.compid;

407 rosmavlink msg.msgid = msg control.msgid;

408 for (int i = 0; i < msg control.len / 8; i++)

409 {
410 (rosmavlink msg.payload64).push back(msg control.payload64[i]);

411 }
412 pub mavlinkMSG.publish(rosmavlink msg);

413 if (debug) { ROS INFO(”MAVLINK RPYT SETPOINT: %d (%0.2f) %d (%0.2f) %

d %u”,sp.roll[0], (float)sp.roll[0]*180/INT16 MAX, sp.pitch[0], (float)sp.pitch

[0]*180/INT16 MAX, sp.yaw[0], sp.thrust[0]); }
414 */

415 }
416

417 /* Displays goal bearings and measured bearings for debugging */

418 void imageCb(const sensor msgs::ImageConstPtr& msg image) {
419 cv bridge::CvImagePtr cv ptr;
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420 try { cv ptr = cv bridge::toCvCopy(msg image, enc::BGR8); }
421 catch (cv bridge::Exception& e) {
422 ROS ERROR(”cv bridge exception: %s”, e.what());

423 return; }
424 /* Compute bearings in image frame and display on image */

425 s img=R cam2img*sCam;

426 sGoal img=R cam2img*R bff2cam*R vicon2bff*sGoal;

427 epsilon total img=R cam2img*R bff2cam*R vicon2bff*epsilon total;

428 int scale=100;

429 char buffer[3];

430 for (int k=0; k<N; k++) {
431 sprintf(buffer,”%d”,k);

432 // Goal bearings (green)

433 cv::line(cv ptr−>image, cv::Point2f(centreX,centreY), cv::Point2f(centreX+

sGoal img(0,k)*scale*2,centreY+sGoal img(1,k)*scale*2),cv::Scalar

(0,255,0));

434 cv::putText(cv ptr−>image,buffer, cv::Point2f(centreX+sGoal img(0,k)*scale,

centreY+sGoal img(1,k)*scale), cv::FONT HERSHEY SIMPLEX, 0.5, cv::

Scalar(0,255,0),1.5);

435 if (!isnan(s img(0,k))) {
436 // Measured bearings (blue)

437 cv::line(cv ptr−>image, cv::Point2f(centreX,centreY), cv::Point2f(centreX

+s img(0,k)*scale*2,centreY+s img(1,k)*scale*2),cv::Scalar(255,0,0));

438 cv::putText(cv ptr−>image,buffer, cv::Point2f(centreX+s img(0,k)*scale,

centreY+s img(1,k)*scale), cv::FONT HERSHEY SIMPLEX, 0.5, cv::

Scalar(255,0,0),1.5);

439 }
440 }
441 // Control force (red)

442 //cv::line(cv ptr−>image, cv::Point2f(centreX,centreY), cv::Point2f(centreX+

epsilon total img[0]*scale*2,centreY+epsilon total img[1]*scale*2),cv::Scalar

(0,0,255));

443 //cv::putText(cv ptr−>image,”F”, cv::Point2f(centreX+epsilon total img[0]*scale,

centreY+epsilon total img[1]*scale), cv::FONT HERSHEY SIMPLEX, 0.5, cv::

Scalar(0,0,255),1.5);

444 cv::imshow(”Detected image”, cv ptr−>image);

445 cv::waitKey(1);

446 }
447 };
448

449 int main(int argc, char **argv) {
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450 ros::init(argc, argv, ”formation control algorithm”);

451 formationControl ic;

452 ros::spin();

453 return 0;

454 }

Listing B.7: /formation control/msg/quadCtrl.msg.

1 # The message published to the mavlink ros node for external control

2 Header header

3 int16 roll

4 int16 pitch

5 int16 yaw

6 uint16 thrust

Listing B.8: /formation control/msg/state.msg.

1 # Holds the position, attitude and velocity measurements

2 float64 roll

3 float64 pitch

4 float64 yaw

5 geometry msgs/Vector3 pos

6 geometry msgs/Vector3 vel

7 geometry msgs/Vector3 vel raw

B.4 mavlink ros Node modifications

This section outlines the modifications made to the mavlink ros serial node by the

Pixhawk team to retrieve external control commands and publish them to the

PX4FMU. This modification should not have been necessary, but MAVLINK packets

made in the formation control node with the same code seemed to fail.

Listing B.9: /mavlink ros/src/mavlink ros serial.src.

1 <unmodified intermediate code not displayed for brevity>

2 #include<std msgs/UInt16MultiArray.h>

3 <unmodified intermediate code not displayed for brevity>

4 offboard sub = mavlink nh.subscribe(”offboard”, 1000, offboardCallback);

5 <unmodified intermediate code not displayed for brevity>
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6 void offboardCallback(const std msgs::UInt16MultiArray msg) {
7 mavlink message t message;

8 mavlink set quad swarm roll pitch yaw thrust t sp;

9 sp.group = 0;

10 sp.mode =2; // MAVLINK OFFBOARD CONTROL MODE ATTITUDE;

11 sp.roll[0] = msg.data[0];

12 sp.pitch[0] = msg.data[1];

13 sp.yaw[0] = msg.data[2];

14 sp.thrust[0] = msg.data[3];

15 mavlink msg set quad swarm roll pitch yaw thrust encode(200, 0, &message, &sp);

16 static uint8 t buf[MAVLINK MAX PACKET LEN];

17 unsigned len = mavlink msg to send buffer((uint8 t*)buf, &message);

18 write(fd, buf, len);

19 tcdrain(fd);

20 }
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PX4FMU Code

Offboard control was added by appending the required states to the commander

module.

Listing C.1: Modifications to commander of the PX4MU for offboard control at

/src/modules/commander/commander.cpp.

1 <unmodified intermediate code not displayed for brevity>

2 /* Check if offboard control signal is ever found */

3 if (sp offboard.timestamp!=0&&!status.offboard control signal found once) {
4 status.offboard control signal found once = true;

5 warnx(”Found offboard signal for first time”);

6 }
7

8 /* Update the mode switches, switch to offboard control if recent signal is obtained and

switch for offboard control is enabled. Arm if appropriate */

9 check mode switches(&sp man, &status);

10 if (status.offboard control signal found once&&status.assisted switch==1) {
11 if (hrt absolute time() < sp offboard.timestamp + RC TIMEOUT) {
12 if (status.offboard control signal lost) {
13 control mode.flag control offboard enabled = true;

14 status.navigation state = NAVIGATION STATE STABILIZE;

15 status.offboard control signal lost = false;

16 status changed = true;

17 warnx(”Enabled offboard control”);

18 mavlink log critical(mavlink fd, ”[cmd] Enabled offboard control”);

19 transition result t resoffb;

20 resoffb = TRANSITION NOT CHANGED;

21 resoffb = arming state transition(&status, &safety, ARMING STATE ARMED,

&armed);

22 if (resoffb == TRANSITION DENIED) {
23 warnx(”ERROR: main denied: arm %d main %d mode sw %d”, status.

arming state, status.main state, status.mode switch);
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24 mavlink log critical(mavlink fd, ”[cmd] ERROR: main denied: arm %d main

%d mode sw %d”, status.arming state, status.main state, status.

mode switch);

25 }
26 if (resoffb == TRANSITION CHANGED) {
27 if (status.arming state == ARMING STATE ARMED) {
28 warnx(”[cmd] ARMED by offboard control”);

29 } else {
30 warnx(”[cmd] FAILED TO ARM by offboard control”);

31 }
32 }
33 }
34 } else if (control mode.flag control offboard enabled) {
35 control mode.flag control offboard enabled = false;

36 status.offboard control signal lost = true;

37 warnx(”Disabled offboard control (signal lost)”);

38 mavlink log critical(mavlink fd, ”[cmd] Disabled offboard control (signal lost)”);

39 }
40 } else if (control mode.flag control offboard enabled) {
41 control mode.flag control offboard enabled = false;

42 status.offboard control signal lost = true;

43 warnx(”Disabled offboard control (by switch)”);

44 mavlink log critical(mavlink fd, ”[cmd] Disabled offboard control (by switch)”);

45 }
46

47 /* ignore RC signals if in offboard control mode */

48 if (!control mode.flag control offboard enabled && sp man.timestamp != 0) {
49 <unmodified intermediate code not displayed for brevity>

79



Appendix D

MATLAB Simulation Code

This MATLAB code was used for simulating the formation control algorithm.

Listing D.1: MATLAB script for simulation of formation control algorithm

1 clear all, close all, clc

2 % Time stuff

3 tmax=10; % seconds

4 dt=1/50;% Timestep for simulation

5 % Constants

6 g=9.81;

7 % Algorithm Parameters

8 system=1;

9 cobs=1;

10 switch system

11 case 0 % Old system

12 c k = 3;

13 D i=3;

14 case 1 % New system

15 d k=0.2*50;

16 c k = 10*50;

17 G=25*50*1.3;

18 D i=0;

19 case 2 % New system, fixed range independent

20 d k=0.2;

21 c k = 10;

22 G=50;

23 D i=0;

24 end

25 %% Height controller gains

26 Kp=0.5;

27 Ki=0;

28 Kd=3;
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29 %% Define goals/Initial positions

30 numQuads=4;

31 mass=[1 1 1 1];

32 colours=['r','g','b','c'];

33 % FIXED MARKERS

34 % fixed=[0 1 1 1];

35 % p=[−1 0 0; −1 2 1; 2 2 1; 2 0 1]';

36 % pDot=[0 0 0; 0 0 0; 0 0 0; 0 0 0]';

37 % pGoal=[1 1 1; −1 2 1; 2 2 1; 2 0 1]';

38 % COMPLEX ARRANGEMENT

39 fixed=[0 0 0 0];

40 p=[−1 0 0; −1 2 1; 2 2 1; 2 0 1]';

41 pDot=[0 0 0; 0 0 0; 0 0 0; 0 0 0]';

42 pGoal=[1 1 1; 0 2 1; 2 0 1; 0 0 1]';

43 %% Logging to file

44 log = 0;

45 if (log==1)

46 fileID = fopen('D:\???.txt','w');

47 fprintf(fileID,'t p1x p1y p1z p2x p2y p2z p3x p3y p3z p4x p4y p4z\r\n');

48 fileID2 = fopen('D:\???.txt','w');

49 fprintf(fileID2,'t e1 e2 e3 e4\r\n');

50 end

51 %% Initialise simulation variables etc

52 for i=1:numQuads

53 for j=1:numQuads

54 qGoal(:,i,j)=pGoal(1:2,j)−pGoal(1:2,i);

55 rGoal(i,j)=sqrt(qGoal(:,i,j)'*qGoal(:,i,j));

56 sGoal(:,i,j)=qGoal(:,i,j)/(sqrt(qGoal(:,i,j)'*qGoal(:,i,j)));

57 q(:,i,j)=p(1:2,j)−p(1:2,i);

58 s(:,i,j)=q(:,i,j)/(sqrt(q(:,i,j)'*q(:,i,j)));

59 r(i,j)=sqrt(q(:,i,j)'*q(:,i,j));

60 e(:,i,j)=c k*(s(:,i,j)−sGoal(:,i,j));

61 rHat(i,j)=sqrt(q(:,i,j)'*q(:,i,j)); % Initial range estimates exact

62 sigma(:,i,j)=zeros(2,1);

63 end

64 fc(:,i)=[0;0;0];

65 end

66 ePID=zeros(2,numQuads);

67 ePIDInt=zeros(1,numQuads);

68 vec p=zeros(3,numQuads,2);

69 bearingError=zeros(1,numQuads);
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70 vec p(:,:,2)=p(:,1:numQuads);

71 %% Initialise plot

72 figure(1) % Plots goal relative positions

73 hold on

74 for i=1:numQuads

75 posH Goal(i)=scatter3(pGoal(1,i),pGoal(2,i),pGoal(3,i),50,colours(i));

76 set(posH Goal(i),'MarkerEdgeColor',colours(i),'MarkerFaceColor',colours(i))

77 end

78 axis equal

79 axis([−2 4 −2 4])

80 figure(2) % Plots vehicle position over time

81 set(gcf,'units','normalized','outerposition',[0.2 0.2 0.6 0.6])

82 subplot(3,1,2), xlabel('t (s)'), ylabel('sum((s−s {goal})ˆ2)')

83 subplot(3,1,3), xlabel('t (s)'), ylabel('height (m)')

84 % subplot(3,1,1), xlabel('x (m)'), ylabel('y (m)'), zlabel('z (m)')

85 figure(3), xlabel('x (m)'), ylabel('y (m)'), zlabel('z (m)')

86 hold on

87 for i=1:numQuads

88 posH(i)=scatter3(p(1,i),p(2,i),p(3,i),50,colours(i),'XDataSource',sprintf('p(1,%d)',i),'

YDataSource',sprintf('p(2,%d)',i),'ZDataSource',sprintf('p(3,%d)',i));

89 set(posH(i),'MarkerEdgeColor',colours(i),'MarkerFaceColor',colours(i))

90 %force(i)=quiver3(p(1,i),p(2,i),p(3,i),0,0,0);

91 end

92 axis equal

93 %% Run simulation

94 t=0;

95 it=1;

96 p1=zeros(numQuads,300);

97 p2=zeros(numQuads,300);

98 p3=zeros(numQuads,300);

99 bearingErrorAll=zeros(numQuads,300);

100 while t<tmax

101 for i=1:numQuads

102 % Compute relative positions/ranges/bearings

103 for j=1:numQuads

104 q(:,i,j)=p(1:2,j)−p(1:2,i);

105 rOld(i,j)=r(i,j);

106 r(i,j)=sqrt(q(:,i,j)'*q(:,i,j));

107 rDot(i,j)=(r(i,j)−rOld(i,j))/dt;

108 sOld(:,i,j)=s(:,i,j); % Update bearing measurements

109 s(:,i,j)=q(:,i,j)/(sqrt(q(:,i,j)'*q(:,i,j)));
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110 sDot(:,i,j)=(s(:,i,j)−sOld(:,i,j))/dt;

111 end

112 % Height controller

113 ePID(1,i)=ePID(2,i);

114 ePID(2,i)=1−p(3,i);

115 ePIDInt(i)=ePIDInt(i)+((ePID(1,i)+ePID(2,i))/2)*dt;

116 ePIDDot=(ePID(2,i)−ePID(1,i))/dt;

117 grav(i)=Kp*ePID(2,i)+Ki*ePIDInt(i)+Kd*ePIDDot+mass(i)*g; % @@@@ Integral

= trapezoidal rule

118 for j=1:numQuads

119 switch system

120 case 0 % Old system

121 e(:,i,j)=c k*(s(:,i,j)−sGoal(:,i,j));

122 rHat(i,j)=rHat(i,j)+(rDot(i,j)−(1/cobs)*(e(:,i,j))'/rHat(i,j)*sDot(:,i,j))

*dt;

123 epsilon(:,i,j)=(1/rHat(i,j))*(eye(2)−s(:,i,j)*s(:,i,j)')*e(:,i,j);

124 delta(:,i)=−pDot(1:2,i)'*D i;

125 case 1 % New system

126 sigma(:,i,j)=sigma(:,i,j)+(1/G)*(c k*(s(:,i,j)−sigma(:,i,j))−d k*(sigma

(:,i,j)−sGoal(:,i,j)));

127 rHat(i,j)=rHat(i,j)+(rDot(i,j)−(c k/cobs)*(s(:,i,j)−sigma(:,i,j))'/rHat(i

,j)*sDot(:,i,j))*dt;

128 epsilon(:,i,j)=(c k/rHat(i,j))*(eye(2)−s(:,i,j)*s(:,i,j)')*(s(:,i,j)−sigma(:,i

,j));

129 delta(:,i)=−pDot(1:2,i)'*D i;

130 case 2 % New system, fixed range independent

131 sigma(:,i,j)=sigma(:,i,j)+(1/G)*(c k*(s(:,i,j)−sigma(:,i,j))−d k*(sigma

(:,i,j)−sGoal(:,i,j)));

132 rHat(i,j)=rHat(i,j)+(rDot(i,j)−(c k/cobs)*(s(:,i,j)−sigma(:,i,j))'/rHat(i

,j)*sDot(:,i,j))*dt;

133 epsilon(:,i,j)=(c k*rHat(i,j))*(eye(2)−s(:,i,j)*s(:,i,j)')*(s(:,i,j)−sigma(:,i

,j));

134 delta(:,i)=−pDot(1:2,i)'*D i;

135 end

136 end

137 % Total control force

138 fc(:,i)=[nansum(epsilon(:,i,:),3);grav(:,i)]+[delta(:,i);0];

139 end

140 %% Update positions/velocities + plot data

141 for i=1:numQuads

142 pDotDot(:,i)=(fc(:,i)−mass(i)*g*[0;0;1])/mass(i); % Update Acceleration
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143 pDot(:,i)=pDot(:,i)+pDotDot(:,i)*dt; % Update velocity

144 if(˜fixed(i))

145 p(:,i)=p(:,i)+pDot(:,i)*dt; % Update position

146 end

147 bearingError(i)=sum(nansum((s(1:2,i,:)−sGoal(1:2,i,:)).ˆ2,3));

148 bearingErrorAll(i,it)=sum(nansum((s(1:2,i,:)−sGoal(1:2,i,:)).ˆ2,3));

149 p1(i,it)=p(1,i);

150 p2(i,it)=p(2,i);

151 p3(i,it)=p(3,i);

152 end

153 %% Log data for LaTeX plots

154 if (log==1)

155 A=[t p(:,1)' p(:,2)' p(:,3)' p(:,4)'];

156 fprintf(fileID,'%.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f

\r\n',A);

157 B=[t bearingError];

158 fprintf(fileID2,'%.4f %.4f %.4f %.4f %.4f\r\n',B);

159 end

160 t=t+dt;

161 it=it+1;

162 end

163 %% Plot all data at once

164 figure(4), xlabel('x (m)'), ylabel('y (m)'), zlabel('z (m)')

165 hold on

166 axis equal

167 for i=1:numQuads

168 plot3(p1(i,:),p2(i,:),p3(i,:),colours(i));

169 end

170 figure(2)

171 subplot(3,1,2)

172 hold on

173 for i=1:numQuads

174 plot((1:size(bearingErrorAll,2))*dt,bearingErrorAll(i,:),colours(i))

175 end

176 fclose('all')
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