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Figure 1: Volume renderings of the pig heart volumetric image (2048x2048x2612 voxels) available from Klacansky [2019].
Renders were at 1920x1200 andwere acceleratedwith early ray termination and our Chebyshev distance empty space skipping.
An NVIDIA GeForce GTX 1080 GPU was used. The transfer function is opaque (left) and translucent (right).

ABSTRACT
Volume rendering has useful applications with emerging technolo-
gies such as virtual and augmented reality. The high frame rate
targets of these technologies poses a problem for volume rendering
because of its very high computational complexity compared with
conventional surface rendering. We developed an efficient empty
space skipping algorithm for accelerating volume rendering. A dis-
tance map is generated which indicates the Chebyshev distance to
the nearest occupied region (with non-transparent voxels) within a
volume. The distance map is used to efficiently skip empty regions
while volume ray casting. We show improved performance over
state-of-the-art empty space skipping techniques.
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1 INTRODUCTION
Volume rendering is a method of visualising a volumetric image
which is typically a three-dimensional regular grid of scalar values
(voxels). Volume ray casting [Kruger and Westermann 2003] maps
each voxel to a colour and opacity which is then projected and
composited onto a framebuffer.

Visualising volumetric images on virtual and augmented reality
devices has many potential applications. The high computational
complexity of volume rendering is a problem for these devices
as they require high frame rates for user comfort. Volume ray
casting can be accelerated by skipping transparent or occluded
voxels using techniques such as Early Ray Termination (ERT) and
Empty Space Skipping (ESS) which are described in Sec. 2. Ray
casting acceleration techniques are also applicable to isosurface
rendering.

A novel ESS technique for acceleration of GPU-based ray casting
is introduced in Sec. 3 which is compared with state-of-the-art
approaches in Sec. 4. The method requires only a small memory
overhead for a distance map which is sampled to determine the
Chebyshev distance to the nearest occupied region of a volume. The
distance map is used to efficiently skip empty regions and reduce
unnecessary texture samples.
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2 BACKGROUND
2.1 Ray Casting
Volume ray casting [Kruger and Westermann 2003] projects a ray
from each pixel of a GPU framebuffer which steps through the
volumetric image (volume) and composites the colour and trans-
parency of voxels it passes through. The scalar value of voxels (and
additional image data such as local gradient) can be mapped to
colours and transparencies using a lookup table known as a transfer
function [Kniss et al. 2002]. The transfer function manipulates the
appearance and visibility of each material in a volume. Image effects
such as shadowing and specularity can also be applied.

Kruger andWestermann [2003] rendered the front and back faces
of a bounding box of the volume in two rendering subpasses to
indicate where the rays projecting from each pixel enter and exit
the underlying 3D texture of the volume. Alternatively, the ray exit
point can be computed from the entry point (or vice versa) directly
requiring only a single rendering subpass [Stegmaier et al. 2005].
Early ray termination is a standard acceleration technique which
stops rays early if an opacity limit is reached rather than where the
ray exits the volume [Kruger and Westermann 2003].

2.2 Empty Space Skipping
Empty space skipping is another standard acceleration technique
which leaps rays over empty regions of a volume. Kruger and West-
ermann [2003] created a reduced resolution occupancy map which
encodes which 83 regions of the volume are empty. The ray skips
over these regions until an occupied region is found and then be-
gins ray casting on the volume image. This type of approach is
considered an image-order ESS algorithm.

Object-order ESS algorithms commence ray casting at the surface
of the bounding geometry of a volume rather than at the front of the
bounding box. The bounding geometry may be generated through
an isosurface extraction [Hadwiger et al. 2005] or other techniques.
These types of approaches reduce the number of texture samples
but introduce overhead to rasterise the bounding geometry.

Some early CPU-based ray casters used precomputed distance
maps encoding the distance from each voxel to the nearest occu-
pied voxel [Sramek and Kaufman 2000]. Large empty regions of a
volume could be skipped given a single distance map sample. These
approaches were not favoured in the transition to GPU-accelerated
ray casting perhaps due to GPU memory constraints.

Large-scale volume rendering algorithms only store occupied
bricks (regions) on the GPU and are capable of rendering sparse
volumes which would otherwise not fit entirely into GPU memory
[Beyer et al. 2015; Gobbetti et al. 2008]. An effective ESS technique
is to store brick references in hierarchical structures (such as an
octree) and skip empty bricks as the structure is traversed.

A recent hybrid object and image-order ESS algorithm is Sparse-
Leap [Hadwiger et al. 2018] which rasterises the geometry into
per-pixel linked lists which indicate where ray segments intersect
with occupied hierarchically referenced bricks. Only the occupied
segments of the ray go through the ray casting pipeline.

In this paper, we describe a GPU-accelerated ray casting vol-
ume renderer which uses distance maps to efficiently skip through
empty regions. Our method innovates the early work of Sramek
and Kaufman [2000] and Kruger and Westermann [2003].

3 OUR METHOD
3.1 Block Empty Space Skipping
A volumetric image is stored in a 3D texture with dimensions
d = [𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑑𝑒𝑝𝑡ℎ] and can be sampled using either nor-
malised texel coordinates, t, which map the texture to [0.0, 1.0] on
each dimension or unnormalised texel coordinates, u, which are in
the range [0.0,𝑤𝑖𝑑𝑡ℎ/ℎ𝑒𝑖𝑔ℎ𝑡/𝑑𝑒𝑝𝑡ℎ). The mapping between these
coordinate systems is

u = d · t. (1)
Voxel colours and transparencies are sampled at 𝑛 equidistant

points along a ray which intersects the volume at tfront and tback
respectively. We compute the number of steps along the ray as

𝑛 =
⌈−−−→max (d) · ∥tback − tfront∥ · 𝑓

⌉
, (2)

where −−−→max is the operator for the maximum element of a vector
and 𝑓 is a sampling factor greater than or equal to 1 used for quality
adjustment. The change in normalised texture coordinates between
each sample point is

Δt =
tback − tfront

𝑛 − 1
, (3)

and the normalised texel coordinates at the 𝑖th point along the ray
are given by

t𝑖 = tfront + 𝑖 · Δt. (4)
We create an occupancy map,𝑀 , which describes which 43 (or

larger) blocks of the volume are empty for the given transfer func-
tion. The occupancy map has dimensions d𝑀 = ⌊d/𝐵⌋ where 𝐵

is the block size. The occupancy map requires only 1/64𝑡ℎ of the
memory of the actual volumetric image if 𝐵 is 4.

Normalised texel coordinates of the occupancy map are com-
puted as

t𝑀 =
d

𝐵 · d𝑀
t (5)

as d may not be evenly divisible by 𝐵 which causes an incorrect
alignment if t were to be used directly for sampling from𝑀 . The
occupancy map voxel at t𝑀 can be sampled to determine if the
current block is empty. If the block is empty, then the number of
ray steps which can be skipped needs to be computed.
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Figure 2: Schematic (2D) of ray casting through occupancy
map. Filled points are sampled and unfilled points are
skipped if the underlying block is empty.
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The change in unnormalised texel coordinates of the occupancy
map per step is

Δu𝑀 = d𝑀 · t𝑀 =
d
𝐵
Δt, (6)

which follows from Eqn. 1 and 5. The number of ray steps required
to be in the next voxel of the occupancy map along dimension
𝑗 ∈ {𝑥,𝑦, 𝑧} is derived geometrically from Fig. 2 as

Δ𝑖 𝑗 =


(
1 +

⌊
u𝑀 𝑗

⌋
− u𝑀 𝑗

)
Δu𝑀−1

𝑗
if Δu𝑀 𝑗 > 0( ⌊

u𝑀 𝑗

⌋
− u𝑀 𝑗

)
Δu𝑀−1

𝑗
otherwise.

(7)

The minimum Δ𝑖 𝑗 across the three dimensions is identified and
rounded up to an integer to find the first sampling point which is
in another voxel of the occupancy map. This process simplifies to

Δ𝑖 = max
(−−→
min

⌈
(𝑠𝑡𝑒𝑝 (Δu𝑀 ) + r𝑀 ) Δu−1𝑀

⌉
, 1

)
, (8)

where 𝑠𝑡𝑒𝑝 is the Heaviside step function and r𝑀 = ⌊u𝑀 ⌋ − u𝑀 .
The ray caster repeatedly samples the occupancy map and skips

empty blocks until an occupied block is found and then standard
volume ray casting begins. The volume is sampled using trilinear
interpolation and voxels from multiple neighbouring blocks may
be sampled if a sample point is near a block edge. For this reason
the step number is decremented by 1 when ray casting begins to
ensure exact image consistency as if ESS were disabled.

Empty space within and behind objects is skipped by resuming
ESS when a consecutive segment of transparent voxels of sufficient
length is found. A length of one and a half times the block size was
found to be a good default.

This approach (which we will refer to as block ESS) is a formalisa-
tion and simplification of the ray casting and empty space skipping
method of Kruger and Westermann [2003] which runs entirely in
a single rendering subpass on modern fully programmable GPUs.
The performance limiting factor of this method is that only one
block of the volume is skipped per sample of the occupancy map.

3.2 Chebyshev Distance Empty Space Skipping
This section introduces an ESS algorithm which we refer to as
Chebyshev distance ESS which can skip multiple blocks of the vol-
ume with a single texture sample. This addresses the key perfor-
mance limitation of the simple ESS approach described in Sec. 3.1.

Chebyshev distance is the greatest difference between two points
along any dimension and is defined as

𝐷Chebyshev (p1, p2) = −−−→max ( |p1 − p2 |) , (9)

where p1 and p2 are the two points of interest.
If the Chebyshev distance from a block to the nearest occupied

block is known then a ray can skip at least that many blocks along
any dimension before it may reach an occupied block. We compute
and store these distances in a distance map derived from the occu-
pancy map using the approach of Saito and Toriwaki [1994] adapted
for integer Chebyshev distance (rather than Euclidean distance)
and GPU-accelerated. Occupied blocks are assigned a distance of 0.

The number of steps required to move to a block 𝐷 blocks away
on dimension 𝑗 is determined geometrically from Fig. 2 as

Δ𝑖 𝑗 =


(
𝐷 +

⌊
u𝑀 𝑗

⌋
− u𝑀 𝑗

)
Δu𝑀−1

𝑗
if Δu𝑀 𝑗 > 0(

1 − 𝐷 +
⌊
u𝑀 𝑗

⌋
− u𝑀 𝑗

)
Δu𝑀−1

𝑗
otherwise

(10)

and then the actual number of steps is

Δ𝑖 = max
(−−→
min

⌈
(𝑠𝑡𝑒𝑝 (−Δu𝑀 ) + 𝑠𝑖𝑔𝑛 (Δu𝑀 ) · 𝐷 + r𝑀 ) Δu−1𝑀

⌉
, 1

)
(11)

following the same approach as for Eqn. 8. Using Eqn. 11 in place
of Eqn. 8 is all that is required for the ray caster described in Sec.
3.1 to skip multiple blocks with only a single sample of the distance
map. Note that Eqn. 8 and 11 are equivalent if 𝐷 is 1.

Chebyshev distances were previously exploited for CPU-based
ray casting by Sramek and Kaufman [2000]. Our approach is fully
GPU-accelerated, and distance map traversal is more efficient and
can be resumed in empty space within and behind objects. The
distance map is at a lower resolution than the volume which gives
a performance improvement and a lower memory overhead.

3.3 Implementation
A ray casting volume renderer was implemented using the Vulkan
graphics and compute API. The renderer supports gradient-based
transfer functions, ERT, and the ESS approaches described in Sec. 3.

We exploit the sparse partially-resident image functionality in
Vulkan to only store occupied bricks on the GPU which enables
rendering of large-scale sparse images which do not fit directly in
GPU memory. The brick size (device dependent) is much larger
than the block size used when generating occupancy and distance
maps. The reduction in frame rate from storing images in this way
is less than 1% when evaluated on the images shown in Fig. 3.

(a) Present
492x492x442

(b) Stag beetle
832x832x494

(c) King snake
1024x1024x795

Figure 3: Volumetric images (via Klacansky [2019]) rendered
with our volume renderer. Image dimensions are shown.

4 RESULTS
Table 1 compares the performance of several volume renderers
which use different ESS approaches. Frame rates were measured
on the volumetric images shown in Fig. 3, however, they were
axis-aligned and orthographically projected to maximise viewport
coverage and different transfer functions were used. Renders were
to a 1200x1200 viewport on a system with an NVIDIA GeForce GTX
1070 GPU. Note that Fig. 1 was rendered on a different system.

VTK [2019] is a popular open-source visualisation library with
an object-based ESS accelerated volume renderer. Rays start at the
object surface which is precomputed as a triangulated isosurface.
We evaluated VTK (version 8.2.0) on the same system with matched
rendering parameters. VTKwasmodified to disable ERT and sample
consistently with our volume renderer in order to produce effec-
tively identical images and allow for a fair frame rate comparison.
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Table 1: Unaccelerated frame rates (baseline) of several volume renderers and the relative speedup from various ESS methods.
Several volumetric images (see Fig. 3) were evaluated with one or two transfer functions. ERT is disabled for all measurements.

Occupied
voxels

Baseline (frames/s) Relative frame rate speedup from baseline with ESS

Image Ours1 VTK2 SparseLeap3 Block1 Chebyshev distance1 Isosurface2 Octree3 SparseLeap3

Present 7.23% 79.2 69.4 17 1.9x 2.2x 1.2x 0.94x 1.1x
0.483% 79.6 77.9 17 3.7x 8.0x 2.3x 2.5x 4.2x

Stag beetle 3.95% 40.1 36.8 12.5 4.7x 7.8x 1.9x 2.3x 3.6x

King snake 43.90% 40.0 24.6 5.5 1.5x 1.5x 0.95x 0.55x 1.0x
0.670% 40.2 33.8 5.5 4.1x 7.1x 1.2x 1.5x 2.7x

Average 3.2x 5.3x 1.5x 1.6x 2.5x
1Measured with our volume renderer (see Sec. 3). 2Measured with VTK [2019]. 3As reported by Hadwiger et al. [2018].

The same volumetric images were previously evaluated by Had-
wiger et al. [2018] with their octree-based ESS implementation and
novel SparseLeap ESS. The transfer functions used in VTK and our
volume renderer were designed to match the image occupancies
they evaluated. We only consider the relative frame rate speedup
of their ESS approaches for comparison (rather than actual frame
rates) as not all rendering parameters could be matched exactly.

Our Chebyshev distance ESS outperformed all other approaches
on every test image and more than doubled the performance of
SparseLeap on average. Our Block ESS was also surprisingly effi-
cient and it outperformed the ESS approaches of VTK and Hadwiger
et al. [2018] in all but one case. SparseLeap was faster than block
ESS for the "present" image with very low voxel occupancy. Our
methods improved the frame rate by 1.5x on the "king snake" image
with 43.90% voxel occupancy whereas the others did not improve
it. This indicates our methods have low computational overhead.

The distance map for the king snake at low occupancy took the
longest to generate at 43.8 milliseconds (the distance map resolu-
tion was 256x256x198 voxels). This seems fast enough for most
purposes as transfer functions are typically only changed occasion-
ally. Distance map updates that occur when the transfer function is
changed could be deferred to another GPU thread and swapped in
when ready to reduce stuttering on the main rendering thread.

The "pig heart" image shown in Fig. 1 was rendered to evaluate
the sparse partially-resident image functionality of our volume
renderer. The original image was roughly 11𝐺𝐵 which reduced to
around 7.5𝐺𝐵 when stored on the GPU with empty space discarded.
The opaque rendering in Fig. 1 (left) renders at 157 frames/s, while
the highly translucent rendering (right) runs at only 7 frames/s due
to the large number of texture samples of the occupied space.

ESS and ERT have limited effectiveness when images with high
occupancy are rendered with low opacity transfer functions. A
future direction for volume rendering acceleration is to reduce
the number of texture samples within occupied regions. The real
challenge is to do this in a way which maintains high image fidelity.

5 CONCLUSIONS
A ray casting method was developed which efficiently traverses
a distance map to skip over empty regions of a volumetric image.
This enables volumetric images with empty space to be visualised

with techniques such as volume rendering and isosurface rendering
at higher frame rates due to reduced computational complexity.

The frame rate (relative to an unaccelerated baseline) was eval-
uated for multiple existing empty space skipping approaches on
several images. Our Chebyshev distance-based approach more than
doubled the performance of the state-of-the-art approach on aver-
age. The method requires only a small memory overhead for the
distance map and a short initial computation time to generate it.
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